예제 #1
0
def aggregate_stats(user,
                    channel,
                    from_,
                    to_,
                    level,
                    stats=('volume', 'latency')):
    data = {}
    for a in stats:
        data[a] = []

    by_ts = {}

    for stat in ServiceChannelStats.objects.by_time_span(user,
                                                         channel,
                                                         start_time=from_,
                                                         end_time=to_,
                                                         level=level):
        by_ts[stat.time_slot] = stat

    counts = defaultdict(int)
    for slot in gen_timeslots(from_, to_, level):
        for stat in stats:
            stat_obj = by_ts.get(slot, None)
            if stat_obj:
                value = getattr(
                    stat_obj, 'average_latency' if stat == 'latency' else stat)
            else:
                value = 0

            data[stat].append([timeslot_to_timestamp_ms(slot), value])
            counts[stat] += value

    return data, counts
예제 #2
0
    def get_time_data(groups, y_axis):
        total_counts = defaultdict(int)
        total_items = defaultdict(int)
        data = defaultdict(list)

        for slot in gen_timeslots(from_ts, to_ts):
            timestamp = timeslot_to_timestamp_ms(slot)
            features_data = groups.get(slot, {})

            for feature in y_axis:
                feature_key = get_feature_key(feature)

                if features_data.get(feature_key):
                    count = _get_count(features_data[feature_key])

                    total_counts[feature_key] += count
                    total_items[feature_key] += 1
                    data[feature_key].append([timestamp, count])
                else:
                    data[feature_key].append([timestamp, 0])

        if plot_type == 'response-time':
            # return average as result
            result_counts = defaultdict(float)
            for key, value in total_counts.iteritems():
                if total_items.get(key):
                    result_counts[key] = round(value / total_items[key], 2)
                else:
                    result_counts[key] = 0
        else:
            result_counts = total_counts
        return data, result_counts
예제 #3
0
파일: listen.py 프로젝트: princez1214/flask
 def _get_data(int_id):
     data = []
     for slot in gen_timeslots(from_dt, to_dt, level):
         timestamp = timeslot_to_timestamp_ms(slot)
         count = ts_counts.get(slot, 0)
         data.append((timestamp, count))
     return data
예제 #4
0
파일: listen.py 프로젝트: princez1214/flask
def _get_performance_stats(user, channel, from_, to_, level, stats_type):
    """ Return list of items for Performance stats graph

    """

    if not isinstance(stats_type, list):
        raise RuntimeError('stats_type should be an array')

    result = []
    for stype in stats_type:
        if stype not in [
                'number_of_posts', 'number_of_actionable_posts',
                'number_of_impressions', 'number_of_clicks',
                'number_of_rejected_posts'
        ]:
            raise RuntimeError("unsupported stats_type %s" % stype)

        values = _get_channel_stats_values(user, channel, from_, to_, level,
                                           stype)
        data = []
        count = 0
        for slot in gen_timeslots(from_, to_, level):
            value = values.get(slot, 0)
            data.append([timeslot_to_timestamp_ms(slot), value])
            count += value
        result.append(dict(data=data, label=stype.split("_")[2], count=count))

    return jsonify(ok=True, list=result, level=level)
예제 #5
0
    def _get_data(from_dt, to_dt, level, pairs, stat_type):
        count = len(pairs)

        date_counts = defaultdict(int)
        total = 0
        for p in pairs:
            #p[0] - time slot
            #p[1] - increment
            date_counts[p[0]] += p[1]
            total += p[1]

        data = []
        for slot in gen_timeslots(from_dt, to_dt, level):
            js_time_stamp = timeslot_to_timestamp_ms(slot)
            data.append((js_time_stamp, date_counts[slot]))

        if stat_type == 'clicks':
            count = total

        return count, data
예제 #6
0
    def get_time_data(self, groups, y_axis):
        """ Return data formated in a FLOT specific format; eg. [[time, count], [time, count]]
        so that we can use it for time plots """
        real_counts = defaultdict(int)
        # We need to actually count the response volume across this data, not timeslots
        # for an accurate average over response time
        for feature in y_axis:
            feature_key = self.get_feature_key(feature)
            for _, value in groups.iteritems():
                if feature_key in value:
                    real_counts[feature_key] += value[feature_key].get('rv', 0)

        total_counts = defaultdict(int)
        total_items = defaultdict(int)
        data = defaultdict(list)

        for slot in gen_timeslots(self.from_ts, self.to_ts):
            timestamp = timeslot_to_timestamp_ms(slot)
            features_data = groups.get(slot, {})
            for feature in y_axis:
                feature_key = self.get_feature_key(feature)
                if features_data.get(feature_key):
                    count = features_data[feature_key].get('count', 0)
                    total_counts[
                        feature_key] += count * features_data[feature_key].get(
                            'rv', 1)
                    total_items[feature_key] += 1
                    data[feature_key].append([timestamp, count])
                else:
                    data[feature_key].append([timestamp, 0])

        result_counts = defaultdict(float)
        for key, value in total_counts.iteritems():
            if total_items.get(key):
                if real_counts[key]:
                    result_counts[key] = round(value / real_counts[key], 2)
                else:
                    result_counts[key] = 0
            else:
                result_counts[key] = 0
        return data, result_counts, total_items
예제 #7
0
    def get_time_data(self, groups, y_axis):
        """ Return data formated in a FLOT specific format; eg. [[time, count], [time, count]]
        so that we can use it for time plots """
        total_counts = defaultdict(int)
        total_items = defaultdict(int)
        data = defaultdict(list)

        for slot in gen_timeslots(self.from_ts, self.to_ts):
            timestamp = timeslot_to_timestamp_ms(slot)
            features_data = groups.get(slot, {})
            for feature in y_axis:
                feature_key = self.get_feature_key(feature)
                if features_data.get(feature_key):
                    count = features_data[feature_key].get('count', 0)
                    total_counts[feature_key] += count
                    total_items[feature_key] += 1
                    data[feature_key].append([timestamp, count])
                else:
                    data[feature_key].append([timestamp, 0])

        return data, total_counts, total_items
예제 #8
0
    for resp in Response.objects.find_by_user(user,
            channel=channel,
            post_date__gte=from_dt, post_date__lt=to_dt,
            punks__in=data['terms'],
            intention_name__in=data['intentions']):

        for punk in resp.punks:
            if punk in data['terms']:
                slot = datetime_to_timeslot(resp.post_date, level=level)
                cache[(punk, resp.intention_name)]['count'] += 1
                cache[(punk, resp.intention_name)]['slots'][slot] += 1

    l = []
    for ((punk, intention_name), stat) in cache.items():
        data = [ (timeslot_to_timestamp_ms(ts), count)
                  for (ts, count) in sorted(stat['slots'].items()) ]
        l.append({'count': stat['count'],
                  'label': '%s||%s||%s' % (punk, stat['count'], intention_name),
                  'data': data})

    return jsonify(ok=True, list=l)


@app.route('/performance/trends2/json', methods=['POST'])
@login_required()
def performance_trends_by_responses(user):
    data = request.json
    if data is None:
        raise abort(415)