예제 #1
0
 def __init__(self):
     self.imgaug_transform = iaa.Add((127, 127), per_channel=False)
     self.augmentor_op = Operations.RandomBrightness(probability=1,
                                                     min_factor=1.5,
                                                     max_factor=1.5)
     self.solt_stream = slc.Stream(
         [slt.Brightness(p=1, brightness_range=(127, 127))])
예제 #2
0
def test_brightness_returns_correct_number_of_channels(img_3x4, img_6x6_rgb):
    trf = slt.Brightness(p=1, brightness_range=(10, 10))
    dc = slc.DataContainer((img_3x4, img_3x4, img_6x6_rgb), "III")
    dc_res = trf(dc)

    img1, img2, img3 = dc_res.data

    assert len(img1.shape) == 3
    assert img1.shape[-1] == 1

    assert len(img2.shape) == 3
    assert img2.shape[-1] == 1

    assert len(img3.shape) == 3
    assert img3.shape[-1] == 3
예제 #3
0
def create_train_transforms(size):
    return solt.Stream([
                        slt.JPEGCompression(p=0.5,quality_range=(60,100)),
                        slt.Noise(p=0.25),
                        slt.Brightness(),
                        slt.Contrast(),
                        slt.Flip(),
                        slt.Rotate90(),
                        solt.SelectiveStream([
                            slt.GammaCorrection(gamma_range=0.5, p=1),
                            slt.Noise(gain_range=0.1, p=1),
                            slt.SaltAndPepper(),
                            slt.Blur(),
                        ], n=3),
                        slt.Rotate(angle_range=(-10, 10), p=0.5),
                        slt.Resize((size,size)),
                    ])
예제 #4
0
 def __init__(self):
     self.imgaug_transform = iaa.Sequential([
         iaa.Multiply((1.5, 1.5), per_channel=False),
         iaa.Add((127, 127), per_channel=False)
     ])
     self.augmentor_pipeline = Pipeline()
     self.augmentor_pipeline.add_operation(
         Operations.RandomBrightness(probability=1,
                                     min_factor=1.5,
                                     max_factor=1.5))
     self.augmentor_pipeline.add_operation(
         Operations.RandomContrast(probability=1,
                                   min_factor=1.5,
                                   max_factor=1.5))
     self.solt_stream = slc.Stream([
         slt.Brightness(p=1, brightness_range=(127, 127)),
         slt.Contrast(p=1, contrast_range=(1.5, 1.5))
     ])