def _instantiate_layers(self): """Instantiates all the convolutional modules used in the network.""" with self._enter_variable_scope(): self._layers = tuple( conv.Conv2DTranspose(name="conv_2d_transpose_{}".format(i), output_channels=self._output_channels[i], output_shape=self._output_shapes[i], kernel_shape=self._kernel_shapes[i], stride=self._strides[i], padding=self._paddings[i], initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, use_bias=self._use_bias[i]) for i in xrange(self._num_layers))
def _instantiate_layers(self): """Instantiates all the convolutional modules used in the network.""" # See `ConvNet2D._instantiate_layers` for more information about why we are # using `check_same_graph=False`. with self._enter_variable_scope(check_same_graph=False): self._layers = tuple( conv.Conv2DTranspose(name="conv_2d_transpose_{}".format(i), output_channels=self._output_channels[i], output_shape=self._output_shapes[i], kernel_shape=self._kernel_shapes[i], stride=self._strides[i], padding=self._paddings[i], initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, data_format=self._data_format, use_bias=self._use_bias[i]) for i in xrange(self._num_layers))