def transform(self, x=None): if x is None: x, y = load_svmlight(self._test_input_path) x = self._model.transform(x) save_svmlight(x, y, self._test_output_path) else: transformed_x = self._model.transform(x) return transformed_x
def run(self): x, y = load_svmlight(self._input_path) kf = cross_validation.KFold(len(y), n_folds=self.k) for out_path, (__, test_index) in zip(self._output_path, kf): portion_x, portion_y = x[test_index, :], y[test_index] save_svmlight(portion_x, portion_y, out_path)
def fit_transform(self): self._model = MinMaxScaler() x, y = load_svmlight(self.input_path) x = x.toarray() x = self._model.fit_transform(x, y) save_svmlight(x, y, self._output_path)
def fit_transform(self): self._model = SelectPercentile(f_classif, self._percentile) x, y = load_svmlight(self.input_path) x = self._model.fit_transform(x, y) save_svmlight(x, y, self._output_path)
def fit_transform(self): self._model = VarianceThreshold(threshold=self._threshold) x, y = load_svmlight(self.input_path) x = self._model.fit_transform(x, y) save_svmlight(x, y, self._output_path)