예제 #1
0
파일: spacy_test.py 프로젝트: pengge/SWDT
 def extract_full_name(nlp_doc):
     pattern = [{'POS': 'PROPN'}, {'POS': 'PROPN'}]
     matcher.add('FULL_NAME', None, pattern)
     matches = matcher(nlp_doc)
     for match_id, start, end in matches:
         span = nlp_doc[start:end]
         return span.text
예제 #2
0
    def emojis(self):
        """
        Emojis detected using SpaCy matcher over the cleaned content, with unicode name and
        sentiment score.

        >>> Doc('Test with emoji 😀 😋 ').emojis
        [('😀', 'GRINNING FACE', 0.571753986332574), ('😋', 'FACE SAVOURING DELICIOUS FOOD', 0.6335149863760218)]
        """
        matcher = spacy.matcher.Matcher(self._spacy_doc.vocab)
        for emoji, unicode_name in emoji2unicode_name.items():
            matcher.add(unicode_name, None, ({'ORTH': emoji}, ))

        return [(emoji, unicode_name, emoji2sentiment[emoji])
                for emoji, unicode_name in self.match(matcher)]
예제 #3
0
파일: doc.py 프로젝트: yapus/textpipe
    def emojis(self):
        """
        Emojis detected using SpaCy matcher over the cleaned content, with unicode name and
        sentiment score.

        >>> from pprint import pprint
        >>> from textpipe.doc import Doc
        >>> pprint(Doc('Test with emoji 😀 😋 ').emojis)
        [('😀', 'GRINNING FACE', 0.571753986332574),
         ('😋', 'FACE SAVOURING DELICIOUS FOOD', 0.6335149863760218)]
        """
        matcher = spacy.matcher.Matcher(self._spacy_doc.vocab)
        for emoji, unicode_name in EMOJI_TO_UNICODE_NAME.items():
            matcher.add(unicode_name, None, ({'ORTH': emoji}, ))

        return [(emoji, unicode_name, EMOJI_TO_SENTIMENT[emoji])
                for emoji, unicode_name in self.match(matcher)]
예제 #4
0
파일: spacy_test.py 프로젝트: pengge/SWDT
 def extract_phone_number(nlp_doc):
     pattern = [{
         'ORTH': '('
     }, {
         'SHAPE': 'ddd'
     }, {
         'ORTH': ')'
     }, {
         'SHAPE': 'ddd'
     }, {
         'ORTH': '-',
         'OP': '?'
     }, {
         'SHAPE': 'ddd'
     }]
     matcher.add('PHONE_NUMBER', None, pattern)
     matches = matcher(nlp_doc)
     for match_id, start, end in matches:
         span = nlp_doc[start:end]
         return span.text
예제 #5
0
def test_matcher_segfault():
    nlp = spacy.load('en', parser=False, entity=False)
    matcher = spacy.matcher.Matcher(nlp.vocab)
    content = u'''a b; c'''
    matcher.add(entity_key='1', label='TEST', attrs={}, specs=[[{ORTH: 'a'}, {ORTH: 'b'}]])
    matcher(nlp(content))
    matcher.add(entity_key='2', label='TEST', attrs={}, specs=[[{ORTH: 'a'}, {ORTH: 'b'}, {IS_PUNCT: True}, {ORTH: 'c'}]])
    matcher(nlp(content))
    matcher.add(entity_key='3', label='TEST', attrs={}, specs=[[{ORTH: 'a'}, {ORTH: 'b'}, {IS_PUNCT: True}, {ORTH: 'd'}]])
    matcher(nlp(content))
예제 #6
0
def test_matcher_segfault():
    nlp = spacy.load('en', parser=False, entity=False)
    matcher = spacy.matcher.Matcher(nlp.vocab)
    content = u'''a b; c'''
    matcher.add(entity_key='1',
                label='TEST',
                attrs={},
                specs=[[{
                    ORTH: 'a'
                }, {
                    ORTH: 'b'
                }]])
    matcher(nlp(content))
    matcher.add(entity_key='2',
                label='TEST',
                attrs={},
                specs=[[{
                    ORTH: 'a'
                }, {
                    ORTH: 'b'
                }, {
                    IS_PUNCT: True
                }, {
                    ORTH: 'c'
                }]])
    matcher(nlp(content))
    matcher.add(entity_key='3',
                label='TEST',
                attrs={},
                specs=[[{
                    ORTH: 'a'
                }, {
                    ORTH: 'b'
                }, {
                    IS_PUNCT: True
                }, {
                    ORTH: 'd'
                }]])
    matcher(nlp(content))
def main():
    in_file = codecs.open('Mercier_1600-1837.txt').read()
    relationship_set = RelationshipHandler()
    merger = quotemerger.HyphenatedNameMerger(nlp.vocab)
    nlp.add_pipe(merger.merger, first=True)
    matcher.add('FATHER_SON_1', relationship_set.handle_fs_1,
                MATCHERS['FATHER_SON_1'])
    matcher.add('FATHER_SON_2', relationship_set.handle_fs_2,
                MATCHERS['FATHER_SON_2'])
    matcher.add('FATHER_SON_3', relationship_set.handle_fs_3,
                MATCHERS['FATHER_SON_3'])

    matcher.add('FATHER_DAUGHTER_1', relationship_set.handle_fd_1,
                MATCHERS['FATHER_DAUGHTER_1'])
    matcher.add('FATHER_DAUGHTER_2', relationship_set.handle_fd_2,
                MATCHERS['FATHER_DAUGHTER_2'])
    matcher.add('FATHER_DAUGHTER_3', relationship_set.handle_fd_3,
                MATCHERS['FATHER_DAUGHTER_3'])
    matcher.add('FATHER_DAUGHTER_4', relationship_set.handle_fd_4,
                MATCHERS['FATHER_DAUGHTER_4'])

    matcher.add('MARIAGE_1', relationship_set.handle_mariage_1_and_2,
                MATCHERS['MARIAGE_1'])
    matcher.add('MARIAGE_2', relationship_set.handle_mariage_1_and_2,
                MATCHERS['MARIAGE_2'])
    matcher.add('MARIAGE_3', relationship_set.handle_mariage_3_and_4,
                MATCHERS['MARIAGE_3'])
    matcher.add('MARIAGE_4', relationship_set.handle_mariage_3_and_4,
                MATCHERS['MARIAGE_4'])
    matcher.add('MARIAGE_5', relationship_set.handle_mariage_5,
                MATCHERS['MARIAGE_5'])
    matcher.add('MARIAGE_6', relationship_set.handle_mariage_6,
                MATCHERS['MARIAGE_6'])

    matcher.add('GENDRE_1', relationship_set.handle_gendre_1,
                MATCHERS['GENDRE_1'])
    matcher.add('GENDRE_2', relationship_set.handle_gendre_2,
                MATCHERS['GENDRE_2'])
    matcher.add('GENDRE_3', relationship_set.handle_gendre_3,
                MATCHERS['GENDRE_3'])

    matcher.add('PERE', relationship_set.handle_pere_1, MATCHERS['PERE'])

    parsed_doc = nlp(in_file)
    matches = matcher(parsed_doc)

    out_file = codecs.open('relations.csv', 'w', encoding='utf8')
    out_file.write('parent,child,relation type\n')
    for rel in relationship_set.relationships:
        if isinstance(rel, FatherSonRelationship):
            out_file.write('{},{},son\n'.format(rel.father, rel.son))
            print('{} is the father of {}'.format(rel.father, rel.son))
        elif isinstance(rel, FatherDaughterRelationship):
            out_file.write('{},{},daughter\n'.format(rel.father, rel.daughter))
            print('{} is the father of {}'.format(rel.father, rel.daughter))
        elif isinstance(rel, GendreRelationship):
            out_file.write('{},{},daughter'.format(rel.father, rel.name))
            out_file.write('{},{},spouse'.format(rel.husband, rel.name))
            print('An unnamed woman is the daughter of {} and husband of {}'.
                  format(rel.father, rel.husband))
    out_file.close()

    print('Matchers done')