sys.exit(1) (action, cluster_name) = args # Launch a cluster, setting several options to defaults # (use spark-ec2.py included with Spark for more control) if action == "launch": try: conn = ec2.connect_to_region(opts.region) except Exception as e: print >> stderr, (e) sys.exit(1) if opts.zone == "": opts.zone = random.choice(conn.get_all_zones()).name opts.ami = get_spark_ami(opts) # "ami-3ecd0c56" opts.ebs_vol_size = 0 opts.master_instance_type = "" opts.hadoop_major_version = "1" opts.ganglia = True opts.spark_version = "1.1.0" opts.swap = 1024 opts.worker_instances = 1 opts.master_opts = "" opts.user_data = "" if opts.resume: (master_nodes, slave_nodes) = get_existing_cluster(conn, opts, cluster_name) else: (master_nodes, slave_nodes) = launch_cluster(conn, opts, cluster_name)
sys.exit(1) (action, cluster_name) = args # Launch a cluster, setting several options to defaults # (use spark-ec2.py included with Spark for more control) if action == "launch": try: conn = ec2.connect_to_region(opts.region) except Exception as e: print >> stderr, (e) sys.exit(1) if opts.zone == "": opts.zone = random.choice(conn.get_all_zones()).name opts.ami = get_spark_ami(opts) opts.ebs_vol_size = 0 opts.spot_price = None opts.master_instance_type = "" opts.wait = 160 opts.hadoop_major_version = "1" opts.ganglia = True opts.spark_version = "1.0.0" opts.swap = 1024 opts.worker_instances = 1 opts.master_opts = "" if opts.resume: (master_nodes, slave_nodes) = get_existing_cluster(conn, opts, cluster_name) else: (master_nodes, slave_nodes) = launch_cluster(conn, opts, cluster_name)
sys.exit(1) (action, cluster_name) = args # Launch a cluster, setting several options to defaults # (use spark-ec2.py included with Spark for more control) if action == "launch": try: conn = ec2.connect_to_region(opts.region) except Exception as e: print >> stderr, (e) sys.exit(1) if opts.zone == "": opts.zone = random.choice(conn.get_all_zones()).name opts.ami = get_spark_ami(opts) opts.ebs_vol_size = 0 opts.spot_price = None opts.master_instance_type = "" opts.wait = 160 opts.hadoop_major_version = "1" opts.ganglia = True opts.spark_version = "0.9.0" opts.swap = 1024 if opts.resume: (master_nodes, slave_nodes) = get_existing_cluster(conn, opts, cluster_name) else: (master_nodes, slave_nodes) = launch_cluster(conn, opts, cluster_name)
sys.exit(1) (action, cluster_name) = args spark_version_string = opts.spark_version # check that requested spark version is <= the $SPARK_HOME version, or is a github hash if '.' in spark_version_string: # version string is dotted, not a hash spark_cluster_loose_version = LooseVersion(spark_version_string) if spark_cluster_loose_version > spark_home_loose_version: raise ValueError("Requested cluster Spark version '%s' is greater " % spark_version_string + "than the local version of Spark in $SPARK_HOME, '%s'" % spark_home_version_string) if spark_cluster_loose_version < LooseVersion(MINIMUM_SPARK_VERSION): raise ValueError("Requested cluster Spark version '%s' is less " % spark_version_string + "than the minimum version required for Thunder, '%s'" % MINIMUM_SPARK_VERSION) opts.ami = get_spark_ami(opts) # "ami-3ecd0c56"\ # get version string as github commit hash if needed (mainly to support Spark release candidates) opts.spark_version = remap_spark_version_to_hash(spark_version_string) # Launch a cluster, setting several options to defaults # (use spark-ec2.py included with Spark for more control) if action == "launch": try: conn = ec2.connect_to_region(opts.region) except Exception as e: print >> stderr, (e) sys.exit(1) if opts.zone == "": opts.zone = random.choice(conn.get_all_zones()).name