if os.path.exists(save_dir + 'Test_RMSE_ll.txt'): os.remove(save_dir + 'Test_RMSE_ll.txt') if os.path.exists(save_dir + 'best_arc_scores.txt'): os.remove(save_dir + 'best_arc_scores.txt') while iteration < BO_rounds: if args.predictor: pred = model.predictor(torch.FloatTensor(X_test).to(device)) pred = pred.detach().cpu().numpy() pred = (-pred - mean_y_train) / std_y_train uncert = np.zeros_like(pred) else: # We fit the GP M = 500 sgp = SparseGP(X_train, 0 * X_train, y_train, M) sgp.train_via_ADAM(X_train, 0 * X_train, y_train, X_test, X_test * 0, \ y_test, minibatch_size = 2 * M, max_iterations = max_iter, learning_rate = lr) pred, uncert = sgp.predict(X_test, 0 * X_test) print("predictions: ", pred.reshape(-1)) print("real values: ", y_test.reshape(-1)) error = np.sqrt(np.mean((pred - y_test)**2)) testll = np.mean(sps.norm.logpdf(pred - y_test, scale=np.sqrt(uncert))) print('Test RMSE: ', error) print('Test ll: ', testll) pearson = float(pearsonr(pred.reshape(-1), y_test.reshape(-1))[0]) print('Pearson r: ', pearson) with open(save_dir + 'Test_RMSE_ll.txt', 'a') as test_file: test_file.write( 'Test RMSE: {:.4f}, ll: {:.4f}, Pearson r: {:.4f}\n'.format( error, testll, pearson))
y_train = y[permutation][0:np.int(np.round(0.9 * n))] y_test = y[permutation][np.int(np.round(0.9 * n)):] import os.path np.random.seed(random_seed) iteration = 0 while iteration < 5: # We fit the GP np.random.seed(iteration * random_seed) M = 500 sgp = SparseGP(X_train, 0 * X_train, y_train, M) sgp.train_via_ADAM(X_train, 0 * X_train, y_train, X_test, X_test * 0, \ y_test, minibatch_size = 10 * M, max_iterations = 50, learning_rate = 0.0005) pred, uncert = sgp.predict(X_test, 0 * X_test) error = np.sqrt(np.mean((pred - y_test)**2)) testll = np.mean(sps.norm.logpdf(pred - y_test, scale=np.sqrt(uncert))) print 'Test RMSE: ', error print 'Test ll: ', testll pred, uncert = sgp.predict(X_train, 0 * X_train) error = np.sqrt(np.mean((pred - y_train)**2)) trainll = np.mean(sps.norm.logpdf(pred - y_train, scale=np.sqrt(uncert))) print 'Train RMSE: ', error print 'Train ll: ', trainll # We load the decoder to obtain the molecules
n = X.shape[0] permutation = np.random.choice(n, n, replace=False) X_train = X[permutation, :][0:np.int(np.round(0.9 * n)), :] X_test = X[permutation, :][np.int(np.round(0.9 * n)):, :] y_train = y[permutation][0:np.int(np.round(0.9 * n))] y_test = y[permutation][np.int(np.round(0.9 * n)):] iteration = 0 while iteration < 5: np.random.seed(iteration * args.seed) M = 500 sgp = SparseGP(X_train, 0 * X_train, y_train, M) sgp.train_via_ADAM(X_train, 0 * X_train, y_train, X_test, X_test * 0, \ y_test, minibatch_size = 10 * M, max_iterations = cmd_args.num_epochs, learning_rate = args.gp_lr) # pred, uncert = sgp.predict(X_test, 0 * X_test) # error = np.sqrt(np.mean((pred - y_test)**2)) # testll = np.mean(sps.norm.logpdf(pred - y_test, scale = np.sqrt(uncert))) # print 'Test RMSE: ', error # print 'Test ll: ', testll # pred, uncert = sgp.predict(X_train, 0 * X_train) # error = np.sqrt(np.mean((pred - y_train)**2)) # trainll = np.mean(sps.norm.logpdf(pred - y_train, scale = np.sqrt(uncert))) # print 'Train RMSE: ', error # print 'Train ll: ', trainll next_inputs = sgp.batched_greedy_ei(50, np.min(X_train, 0), np.max(X_train, 0))
# y /= np.max(y) assert X.shape[0] == y.shape[0] n = X.shape[ 0 ] permutation = np.random.choice(n, n, replace = False) X_train = X[ permutation, : ][ 0 : np.int(np.round(0.9 * n)), : ] X_test = X[ permutation, : ][ np.int(np.round(0.9 * n)) :, : ] y_train = y[ permutation ][ 0 : np.int(np.round(0.9 * n)) ] y_test = y[ permutation ][ np.int(np.round(0.9 * n)) : ] np.random.seed(0) M = 500 sgp = SparseGP(X_train, 0 * X_train, y_train, M) sgp.train_via_ADAM(X_train, 0 * X_train, y_train, X_test, X_test * 0, \ y_test, minibatch_size = 10 * M, max_iterations = cmd_args.num_epochs, learning_rate = args.gp_lr) with open('%s/sgp-e-%d-seed-%d-lr-%.4f.txt' % (cmd_args.save_dir, cmd_args.num_epochs, args.seed, args.gp_lr), 'w') as f: pred, uncert = sgp.predict(X_test, 0 * X_test) error = np.sqrt(np.mean((pred - y_test)**2)) testll = np.mean(sps.norm.logpdf(pred - y_test, scale = np.sqrt(uncert))) f.write('Test RMSE: %.10f\n' % error) f.write('Test ll: %.10f\n' % testll) print 'Test RMSE: ', error print 'Test ll: ', testll pred, uncert = sgp.predict(X_train, 0 * X_train) error = np.sqrt(np.mean((pred - y_train)**2)) trainll = np.mean(sps.norm.logpdf(pred - y_train, scale = np.sqrt(uncert))) f.write('Train RMSE: %.10f\n' % error) f.write('Train ll: %.10f\n' % trainll)
logP_values_normalized = (np.array(logP_values) - np.mean(logP_values)) / np.std(logP_values) cycle_scores_normalized = (np.array(cycle_scores) - np.mean(cycle_scores)) / np.std(cycle_scores) iteration = 0 while iteration < 2: # We fit the GP np.random.seed(iteration * random_seed) M = 1 sgp = SparseGP(X_train, 0 * X_train, y_train, M) sgp.train_via_ADAM(X_train, 0 * X_train, y_train, X_test, X_test * 0, y_test, minibatch_size=2, max_iterations=100, learning_rate=0.001) pred, uncert = sgp.predict(X_test, 0 * X_test) error = np.sqrt(np.mean((pred - y_test)**2)) testll = np.mean(sps.norm.logpdf(pred - y_test, scale=np.sqrt(uncert))) print 'Test RMSE: ', error print 'Test ll: ', testll pred, uncert = sgp.predict(X_train, 0 * X_train) error = np.sqrt(np.mean((pred - y_train)**2)) trainll = np.mean(sps.norm.logpdf(pred - y_train, scale=np.sqrt(uncert))) print 'Train RMSE: ', error
def run_bo_demo(): import sys sys.path.append('/home/icml18-jtnn') import pickle import gzip from sparse_gp import SparseGP import scipy.stats as sps import numpy as np import os.path import time import rdkit from rdkit.Chem import MolFromSmiles, MolToSmiles from rdkit.Chem import Descriptors from rdkit.Chem import PandasTools import torch import torch.nn as nn from jtnn import create_var, JTNNVAE, Vocab start_time = time.time() lg = rdkit.RDLogger.logger() lg.setLevel(rdkit.RDLogger.CRITICAL) # We define the functions used to load and save objects def save_object(obj, filename): result = pickle.dumps(obj) with gzip.GzipFile(filename, 'wb') as dest: dest.write(result) dest.close() def load_object(filename): with gzip.GzipFile(filename, 'rb') as source: result = source.read() ret = pickle.loads(result) source.close() return ret vocab_path = '../data/vocab.txt' #save_dir=save_dir vocab = [x.strip("\r\n ") for x in open(vocab_path)] vocab = Vocab(vocab) # print(opts.save_dir) hidden_size = 450 latent_size = 56 depth = 3 random_seed = 1 model = JTNNVAE(vocab, hidden_size, latent_size, depth) model.load_state_dict( torch.load('../molvae/MPNVAE-h450-L56-d3-beta0.005/model.iter-4', map_location=lambda storage, loc: storage)) #model = model.cuda() # We load the random seed np.random.seed(random_seed) # We load the data (y is minued!) X = np.loadtxt('latent_features_demo.txt') y = -np.loadtxt('targets_demo.txt') y = y.reshape((-1, 1)) n = X.shape[0] # print(X.shape[1]) permutation = np.random.choice(n, n, replace=False) # print(n) X_train = X[permutation, :][0:np.int(np.round(0.8 * n)), :] X_test = X[permutation, :][np.int(np.round(0.8 * n)):, :] # print(X_train.shape) y_train = y[permutation][0:np.int(np.round(0.8 * n))] y_test = y[permutation][np.int(np.round(0.8 * n)):] np.random.seed(random_seed) logP_values = np.loadtxt('logP_values_demo.txt') SA_scores = np.loadtxt('SA_scores_demo.txt') cycle_scores = np.loadtxt('cycle_scores_demo.txt') SA_scores_normalized = (np.array(SA_scores) - np.mean(SA_scores)) / np.std(SA_scores) logP_values_normalized = (np.array(logP_values) - np.mean(logP_values)) / np.std(logP_values) cycle_scores_normalized = (np.array(cycle_scores) - np.mean(cycle_scores)) / np.std(cycle_scores) iteration = 0 while iteration < 1: # We fit the GP np.random.seed(iteration * random_seed) M = 1 sgp = SparseGP(X_train, 0 * X_train, y_train, M) sgp.train_via_ADAM(X_train, 0 * X_train, y_train, X_test, X_test * 0, y_test, minibatch_size=2, max_iterations=100, learning_rate=0.001) pred, uncert = sgp.predict(X_test, 0 * X_test) error = np.sqrt(np.mean((pred - y_test)**2)) testll = np.mean(sps.norm.logpdf(pred - y_test, scale=np.sqrt(uncert))) # print 'Test RMSE: ', error # print 'Test ll: ', testll pred, uncert = sgp.predict(X_train, 0 * X_train) error = np.sqrt(np.mean((pred - y_train)**2)) trainll = np.mean( sps.norm.logpdf(pred - y_train, scale=np.sqrt(uncert))) # print 'Train RMSE: ', error # print 'Train ll: ', trainll # We pick the next 60 inputs next_inputs = sgp.batched_greedy_ei(60, np.min(X_train, 0), np.max(X_train, 0)) valid_smiles = [] valid_mols = [] new_features = [] for i in xrange(60): all_vec = next_inputs[i].reshape((1, -1)) tree_vec, mol_vec = np.hsplit(all_vec, 2) tree_vec = create_var(torch.from_numpy(tree_vec).float()) mol_vec = create_var(torch.from_numpy(mol_vec).float()) s = model.decode(tree_vec, mol_vec, prob_decode=False) if s is not None: valid_smiles.append(s) # print(MolFromSmiles(s)) valid_mols.append(str(MolFromSmiles(s))) new_features.append(all_vec) print len(valid_smiles), "molecules are found" valid_smiles = valid_smiles[:50] valid_mols = valid_mols[:50] new_features = next_inputs[:50] new_features = np.vstack(new_features) # save_object(valid_smiles, save_dir + "/valid_smiles{}.dat".format(iteration)) # save_object(valid_mols,save_dir + '/valid_mols{}.png'.format(iteration)) # save_object(mol1 import sascorer import networkx as nx from rdkit.Chem import rdmolops scores = [] for i in range(len(valid_smiles)): current_log_P_value = Descriptors.MolLogP( MolFromSmiles(valid_smiles[i])) current_SA_score = -sascorer.calculateScore( MolFromSmiles(valid_smiles[i])) cycle_list = nx.cycle_basis( nx.Graph( rdmolops.GetAdjacencyMatrix(MolFromSmiles( valid_smiles[i])))) if len(cycle_list) == 0: cycle_length = 0 else: cycle_length = max([len(j) for j in cycle_list]) if cycle_length <= 6: cycle_length = 0 else: cycle_length = cycle_length - 6 current_cycle_score = -cycle_length current_SA_score_normalized = ( current_SA_score - np.mean(SA_scores)) / np.std(SA_scores) current_log_P_value_normalized = ( current_log_P_value - np.mean(logP_values)) / np.std(logP_values) current_cycle_score_normalized = ( current_cycle_score - np.mean(cycle_scores)) / np.std(cycle_scores) score = current_SA_score_normalized + current_log_P_value_normalized + current_cycle_score_normalized scores.append(-score) #target is always minused # print valid_smiles # print scores # save_object(scores, save_dir + "/scores{}.dat".format(iteration)) if len(new_features) > 0: X_train = np.concatenate([X_train, new_features], 0) y_train = np.concatenate([y_train, np.array(scores)[:, None]], 0) iteration += 1 # print('Seconds taken: %s' %(time.time() -start_time)) all_smiles = [] #all_smiles=valid_smiles+scores+valid_mols all_smiles.extend(zip(valid_smiles, scores, valid_mols)) all_smiles = [(x, -y, z) for x, y, z in all_smiles] all_smiles = sorted(all_smiles, key=lambda x: x[1], reverse=True) # return valid_smiles[0:5],scores[0:5],valid_mols[0:5] return all_smiles[0:3]
def main(input_directory, output_directory): """ :param input_directory: directory to which the output of Branin_Sampler.py was saved. :param output_directory: directory in which to save the plots. """ np.random.seed(2) # Load the dataset X_bran = genfromtxt(input_directory + '/inputs.csv', delimiter=',', dtype='float32') y_con = genfromtxt(input_directory + '/constraint_targets.csv', delimiter=',', dtype='int') y_reg = genfromtxt(input_directory + '/branin_targets.csv', delimiter=',', dtype='float32') y_reg = y_reg.reshape((-1, 1)) # We convert constraint targets from one-hot to categorical. y_con_cat = np.zeros(len(y_con), dtype=int) i = 0 for element in y_con: if element[0] == 1: y_con_cat[i] = 1 else: y_con_cat[i] = 0 i += 1 y_con = y_con_cat n_bran = X_bran.shape[0] # number of examples permutation = np.random.choice(n_bran, n_bran, replace=False) # We shuffle the data X_tr_bran = X_bran[permutation, :][40:np.int(np.round( 0.9 * n_bran)), :] # 50/10 train/test split. X_te_bran = X_bran[permutation, :][ np.int(np.round(0.8 * n_bran)):np.int(np.round(0.9 * n_bran)), :] y_tr_reg = y_reg[permutation][40:np.int( np.round(0.9 * n_bran) )] # 10:20 have balanced class split after the permutation is applied with random seed = 1 y_te_reg = y_reg[permutation][np.int(np.round(0.8 * n_bran)):np. int(np.round(0.9 * n_bran))] y_tr_con = y_con[permutation][40:np.int( np.round(0.9 * n_bran) )] # no test set for constraint as traning subroutine for BNN doesn't require it y_te_con = y_con[permutation][np.int(np.round(0.8 * n_bran)):np. int(np.round(0.9 * n_bran))] # We plot the data used to initialise the surrogate model X1 = X_tr_bran[:, 0] X2 = X_tr_bran[:, 1] save_object(X1, output_directory + "/X1.dat") save_object(X2, output_directory + "/X2.dat") # We store the best feasible value found in the training set for reference feasible_vals = [] for i in range(X_tr_bran.shape[0]): if y_tr_con[i] == 0: continue feasible_vals.append([branin(tuple(X_tr_bran[i]))]) best_tr = min(feasible_vals) best_tr = best_tr[0] save_object(best_tr, output_directory + "/best_feasible_training_point.dat") # We set the number of data colletion iterations num_iters = 4 for iteration in range(num_iters): # We train the regression model # We fit the GP # M = np.int(np.maximum(10,np.round(0.1 * n_bran))) M = 20 sgp = SparseGP(X_tr_bran, 0 * X_tr_bran, y_tr_reg, M) sgp.train_via_ADAM(X_tr_bran, 0 * X_tr_bran, y_tr_reg, X_te_bran, X_te_bran * 0, y_te_reg, minibatch_size=M, max_iterations=400, learning_rate=0.005) save_object(sgp, output_directory + "/sgp{}.dat".format(iteration)) # We load the saved gp sgp = load_object(output_directory + "/sgp{}.dat".format(iteration)) # We load some previous trained gp pred, uncert = sgp.predict(X_te_bran, 0 * X_te_bran) error = np.sqrt(np.mean((pred - y_te_reg)**2)) testll = np.mean( sps.norm.logpdf(pred - y_te_reg, scale=np.sqrt(uncert))) print('Test RMSE: ', error) print('Test ll: ', testll) pred, uncert = sgp.predict(X_tr_bran, 0 * X_tr_bran) error = np.sqrt(np.mean((pred - y_tr_reg)**2)) trainll = np.mean( sps.norm.logpdf(pred - y_tr_reg, scale=np.sqrt(uncert))) print('Train RMSE: ', error) print('Train ll: ', trainll) # we train the constraint network # We load the random seed seed = 1 np.random.seed(seed) # We load the data datasets, n, d, n_labels = load_data(X_tr_bran, y_tr_con, X_te_bran, y_te_con) train_set_x, train_set_y = datasets[0] test_set_x, test_set_y = datasets[1] N_train = train_set_x.get_value(borrow=True).shape[0] N_test = test_set_x.get_value(borrow=True).shape[0] layer_sizes = [d, 50, n_labels] n_samples = 50 alpha = 0.5 learning_rate = 0.001 v_prior = 1.0 batch_size = 10 print('... building model') sys.stdout.flush() bb_alpha = BB_alpha(layer_sizes, n_samples, alpha, learning_rate, v_prior, batch_size, train_set_x, train_set_y, N_train, test_set_x, test_set_y, N_test) print('... training') sys.stdout.flush() test_error, test_ll = bb_alpha.train(400) # We save the trained BNN sys.setrecursionlimit(4000) # Required to save the BNN save_object(bb_alpha, output_directory + "/bb_alpha{}.dat".format(iteration)) # We pick the next 5 inputs based on random sampling np.random.seed() num_inputs = 1 x1 = np.random.uniform(-5, 10, size=num_inputs) x2 = np.random.uniform(0, 15, size=num_inputs) random_inputs = np.zeros([num_inputs, 2]) random_inputs[:, 0] = x1 random_inputs[:, 1] = x2 reg_scores = [] # collect y-values for Branin-Hoo function con_scores = [] # collect y-values for Constraint function probs = [] # collect the probabilities of satisfying the constraint log_probs = [ ] # collect the log probabilities of satisfying the constraint for i in range(random_inputs.shape[0]): reg_scores.append([branin(tuple(random_inputs[i]))]) if (random_inputs[i][0] - 2.5)**2 + (random_inputs[i][1] - 7.5)**2 <= 50: con_scores.append(np.int64(1)) else: con_scores.append(np.int64(0)) probs.append( bb_alpha.prediction_probs(random_inputs[i].reshape( 1, d))[0][0][1]) log_probs.append( bb_alpha.pred_log_probs(random_inputs[i].reshape(1, d))[0][0][1]) print(i) # print the value of the Branin-Hoo function at the data points we have acquired print(reg_scores) # save y-values and (x1,x2)-coordinates of locations chosen for evaluation save_object(reg_scores, output_directory + "/scores{}.dat".format(iteration)) save_object(random_inputs, output_directory + "/next_inputs{}.dat".format(iteration)) save_object(con_scores, output_directory + "/con_scores{}.dat".format(iteration)) save_object(probs, output_directory + "/probs{}.dat".format(iteration)) save_object(log_probs, output_directory + "/log_probs{}.dat".format(iteration)) # extend labelled training data for next cycle X_tr_bran = np.concatenate([X_tr_bran, random_inputs], 0) y_tr_reg = np.concatenate([y_tr_reg, np.array(reg_scores)], 0) y_tr_con = np.concatenate([y_tr_con, np.array(con_scores)], 0) best_so_far( output_directory, num_iters ) # Plot the best point as a function of the data collection iteration number GP_contours(output_directory, num_iters) # Plot the contours of the GP regression model BNN_contours(output_directory, num_iters) # Plot the contours of the BNN constraint model initial_data( output_directory) # Plot the data used to initialise the model