Y = data["NH4N"] Eastings = data["X_COORD"] Northings = data["Y_COORD"] good = np.where(1 - ((np.isnan(X[:,0])) + (np.isnan(X[:,1])) + (np.isnan(X[:,2])) + (np.isnan(Y)) + (np.isnan(Eastings)) + (np.isnan(Northings)))) Y = Y[good] X = X[good] Eastings = Eastings[good] Northings = Northings[good] k = krige.bayes(Y, Eastings, Northings, X #np.vstack([data["Monitor_Classification"], data["Monitor_Radius_km"]]).transpose() ) #import cProfile #cProfile.run("k.Converge()") k.Converge()
from spatial import krige as krige import numpy as np data = np.genfromtxt("./chicagomondataR.csv", dtype = None, delimiter =",", names = True) X = np.array([1]*data.shape[0]) X.shape = (len(X), 1) k = krige.bayes(data["PM25_ugm3"], data["EW_Coord_km"], data["NS_Coord_km"], X #np.vstack([data["Monitor_Classification"], data["Monitor_Radius_km"]]).transpose() ) k.Converge()