def test_fit(): npr.seed(1) N = 10 D = 5 burnin = 100 mcmc_iters = 100 num_pending = 3 num_fantasies = 2 gp = GPClassifier(D, burnin=burnin, mcmc_iters=mcmc_iters, num_fantasies=num_fantasies) inputs = np.vstack((0.1*npr.rand(N,D),npr.rand(N,D))) inputs[12] = np.ones(D) pending = npr.rand(3,D) W = npr.randn(D,1) vals = (inputs - inputs.mean(0)).dot(W).flatten() > 0 gp.fit(inputs, vals, pending) probs = np.zeros(inputs.shape[0]) for i in xrange(gp.num_states): gp.set_state(i) probs += (gp.latent_values.value > 0) / float(mcmc_iters) assert np.all(probs[:N] < 0.5) and np.all(probs[N:] > 0.5) assert gp.values.shape[0] == 2*N + num_pending assert gp.values.shape[1] == 2 assert gp.chain_length == burnin + mcmc_iters assert all([np.all(p.value != p.initial_value) for p in gp.params.values()]) assert len(gp._cache_list) == mcmc_iters assert len(gp._hypers_list) == mcmc_iters assert len(gp._latent_values_list) == mcmc_iters assert len(gp._fantasy_values_list) == mcmc_iters
def test_fit(): npr.seed(1) N = 10 D = 5 burnin = 100 mcmc_iters = 100 num_pending = 3 num_fantasies = 2 gp = GPClassifier(D, burnin=burnin, mcmc_iters=mcmc_iters, num_fantasies=num_fantasies) inputs = np.vstack((0.1 * npr.rand(N, D), npr.rand(N, D))) inputs[12] = np.ones(D) pending = npr.rand(3, D) W = npr.randn(D, 1) vals = (inputs - inputs.mean(0)).dot(W).flatten() > 0 gp.fit(inputs, vals, pending) probs = np.zeros(inputs.shape[0]) for i in xrange(gp.num_states): gp.set_state(i) probs += (gp.latent_values.value > 0) / float(mcmc_iters) assert np.all(probs[:N] < 0.5) and np.all(probs[N:] > 0.5) assert gp.values.shape[0] == 2 * N + num_pending assert gp.values.shape[1] == 2 assert gp.chain_length == burnin + mcmc_iters assert all( [np.all(p.value != p.initial_value) for p in gp.params.values()]) assert len(gp._cache_list) == mcmc_iters assert len(gp._hypers_list) == mcmc_iters assert len(gp._latent_values_list) == mcmc_iters assert len(gp._fantasy_values_list) == mcmc_iters
def test_predict(): npr.seed(1) N = 10 Npend = 3 Ntest = 2 D = 5 gp = GPClassifier(D, burnin=5, num_fantasies=7) pred = npr.rand(Ntest, D) # Test with 0 points mu, v = gp.predict(pred) np.testing.assert_allclose(mu, 0, rtol=1e-7, atol=0, err_msg='', verbose=True) np.testing.assert_allclose(v, 1 + 1e-6, rtol=1e-7, atol=0, err_msg='', verbose=True) #Test with 1 point X = np.zeros((1, D)) W = npr.randn(D, 1) val = X.dot(W).flatten() > 0 gp.fit(X, val, fit_hypers=False) mu, v = gp.predict(pred) # Points closer to the origin will have less variance and a larger mean mu, v = gp.predict(np.tile(np.linspace(0, 1, 100)[:, None], (1, D))) assert np.all(np.diff(mu) > 0) and np.all(np.diff(v) > 0) # Now let's make sure it doesn't break with more data and pending inputs = 0.5 * npr.rand(N, D) vals = inputs.dot(W).flatten() > 0 pending = npr.rand(Npend, D) gp.fit(inputs, vals, pending) mu, v = gp.predict(pred) # Now let's check the gradients eps = 1e-5 mu, v, dmu, dv = gp.predict(pred, compute_grad=True) # The implied loss is np.sum(mu**2) + np.sum(v**2) dloss = 2 * (dmu * mu[:, np.newaxis, :]).sum(2) + 2 * ( v[:, np.newaxis, np.newaxis] * dv).sum(2) dloss_est = np.zeros(dloss.shape) for i in xrange(Ntest): for j in xrange(D): pred[i, j] += eps mu, v = gp.predict(pred) loss_1 = np.sum(mu**2) + np.sum(v**2) pred[i, j] -= 2 * eps mu, v = gp.predict(pred) loss_2 = np.sum(mu**2) + np.sum(v**2) pred[i, j] += eps dloss_est[i, j] = ((loss_1 - loss_2) / (2 * eps)) assert np.linalg.norm(dloss - dloss_est) < 1e-5
def test_gp_init(): gp = GPClassifier(5)
def test_predict(): npr.seed(1) N = 10 Npend = 3 Ntest = 2 D = 5 gp = GPClassifier(D, burnin=5, num_fantasies=7) pred = npr.rand(Ntest,D) # Test with 0 points mu, v = gp.predict(pred) np.testing.assert_allclose(mu, 0, rtol=1e-7, atol=0, err_msg='', verbose=True) np.testing.assert_allclose(v, 1+1e-6, rtol=1e-7, atol=0, err_msg='', verbose=True) #Test with 1 point X = np.zeros((1,D)) W = npr.randn(D,1) val = X.dot(W).flatten() > 0 gp.fit(X, val, fit_hypers=False) mu, v = gp.predict(pred) # Points closer to the origin will have less variance and a larger mean mu, v = gp.predict(np.tile(np.linspace(0,1,100)[:,None],(1,D))) assert np.all(np.diff(mu) > 0) and np.all(np.diff(v) > 0) # Now let's make sure it doesn't break with more data and pending inputs = 0.5*npr.rand(N,D) vals = inputs.dot(W).flatten() > 0 pending = npr.rand(Npend,D) gp.fit(inputs, vals, pending) mu, v = gp.predict(pred) # Now let's check the gradients eps = 1e-5 mu, v, dmu, dv = gp.predict(pred, compute_grad=True) # The implied loss is np.sum(mu**2) + np.sum(v**2) dloss = 2*(dmu*mu[:,np.newaxis,:]).sum(2) + 2*(v[:,np.newaxis,np.newaxis]*dv).sum(2) dloss_est = np.zeros(dloss.shape) for i in xrange(Ntest): for j in xrange(D): pred[i,j] += eps mu, v = gp.predict(pred) loss_1 = np.sum(mu**2) + np.sum(v**2) pred[i,j] -= 2*eps mu, v = gp.predict(pred) loss_2 = np.sum(mu**2) + np.sum(v**2) pred[i,j] += eps dloss_est[i,j] = ((loss_1 - loss_2) / (2*eps)) assert np.linalg.norm(dloss - dloss_est) < 1e-5