def test_forward_pass(): npr.seed(1) N = 15 D = 10 data = 0.5*npr.rand(N,D) norm = Normalization(3) norm_inds = [1,3,5] bw = BetaWarp(2) bw_inds = [0,2] lin = Linear(3) lin_inds = [6,8,9] t = Transformer(D) t.add_layer((norm, norm_inds), (bw, bw_inds), (lin, lin_inds)) new_data = t.forward_pass(data) assert new_data.shape[1] == 9 assert np.all(new_data[:,7:] == data[:,[4,7]]) assert np.linalg.norm(new_data[:,0:3].sum(1) - 1) < 1e-10 bw = BetaWarp(9) t.add_layer(bw)
def test_backward_pass(): npr.seed(1) N = 10 D = 3 alpha = Hyperparameter( initial_value = 2*np.ones(D), prior = priors.Lognormal(1.5), name = 'alpha' ) beta = Hyperparameter( initial_value = 0.5*np.ones(D), prior = priors.Lognormal(1.5), name = 'beta' ) bw = BetaWarp(D, alpha=alpha, beta=beta) data = 0.5*np.ones(D) v = npr.randn(D) bw.forward_pass(data) assert np.all(bw.backward_pass(v) == 0.53033008588991071*v)
def test_backward_pass(): npr.seed(1) eps = 1e-5 N = 15 D = 10 data = 0.5*npr.rand(N,D) norm = Normalization(3) norm_inds = [1,3,5] bw = BetaWarp(2) bw_inds = [0,2] lin = Linear(3) lin_inds = [6,8,9] t = Transformer(D) # Add a layer and test the gradient t.add_layer((norm, norm_inds), (bw, bw_inds), (lin, lin_inds)) new_data = t.forward_pass(data) loss = np.sum(new_data**2) V = 2*new_data dloss = t.backward_pass(V) dloss_est = np.zeros(dloss.shape) for i in xrange(N): for j in xrange(D): data[i,j] += eps loss_1 = np.sum(t.forward_pass(data)**2) data[i,j] -= 2*eps loss_2 = np.sum(t.forward_pass(data)**2) data[i,j] += eps dloss_est[i,j] = ((loss_1 - loss_2) / (2*eps)) assert np.linalg.norm(dloss - dloss_est) < 1e-6 # Add a second layer and test the gradient t.add_layer(Linear(9)) new_data = t.forward_pass(data) loss = np.sum(new_data**2) V = 2*new_data dloss = t.backward_pass(V) dloss_est = np.zeros(dloss.shape) for i in xrange(N): for j in xrange(D): data[i,j] += eps loss_1 = np.sum(t.forward_pass(data)**2) data[i,j] -= 2*eps loss_2 = np.sum(t.forward_pass(data)**2) data[i,j] += eps dloss_est[i,j] = ((loss_1 - loss_2) / (2*eps)) assert np.linalg.norm(dloss - dloss_est) < 1e-6
def _build(self): self.params = {} self.latent_values = None # Build the transformer beta_warp = BetaWarp(self.num_dims) beta_alpha, beta_beta = beta_warp.hypers self.params['beta_alpha'] = beta_alpha self.params['beta_beta'] = beta_beta transformer = Transformer(self.num_dims) transformer.add_layer(beta_warp) # Build the component kernels input_kernel = Matern52(self.num_dims) ls = input_kernel.hypers self.params['ls'] = ls # Now apply the transformation. transform_kernel = TransformKernel(input_kernel, transformer) # Add some perturbation for stability stability_noise = Noise(self.num_dims) # Finally make a noisy version if necessary # In a classifier GP the notion of "noise" is really just the scale. if self.noiseless: self._kernel = SumKernel(transform_kernel, stability_noise) else: scaled_kernel = Scale(transform_kernel) self._kernel = SumKernel(scaled_kernel, stability_noise) amp2 = scaled_kernel.hypers self.params['amp2'] = amp2 # Build the mean function (just a constant mean for now) self.mean = Hyperparameter(initial_value=0.0, prior=priors.Gaussian(0.0, 1.0), name='mean') self.params['mean'] = self.mean # Buld the latent values. Empty for now until the GP gets data. self.latent_values = Hyperparameter(initial_value=np.array([]), name='latent values') # Build the samplers to_sample = [self.mean] if self.noiseless else [self.mean, amp2] self._samplers.append( SliceSampler(*to_sample, compwise=False, thinning=self.thinning)) self._samplers.append( WhitenedPriorSliceSampler(ls, beta_alpha, beta_beta, compwise=True, thinning=self.thinning)) self.latent_values_sampler = EllipticalSliceSampler( self.latent_values, thinning=self.ess_thinning)
def test_forward_pass(): npr.seed(1) N = 10 D = 3 alpha = Hyperparameter(initial_value=2 * np.ones(D), prior=priors.Lognormal(1.5), name='alpha') beta = Hyperparameter(initial_value=0.5 * np.ones(D), prior=priors.Lognormal(1.5), name='beta') bw = BetaWarp(D, alpha=alpha, beta=beta) data = 0.5 * np.ones(D) assert np.all(bw.forward_pass(data) == 0.1161165235168156)
def test_backward_pass(): npr.seed(1) N = 10 D = 3 alpha = Hyperparameter(initial_value=2 * np.ones(D), prior=priors.Lognormal(1.5), name='alpha') beta = Hyperparameter(initial_value=0.5 * np.ones(D), prior=priors.Lognormal(1.5), name='beta') bw = BetaWarp(D, alpha=alpha, beta=beta) data = 0.5 * np.ones(D) v = npr.randn(D) bw.forward_pass(data) assert np.all(bw.backward_pass(v) == 0.53033008588991071 * v)
def test_validation(): warnings.filterwarnings('error') npr.seed(1) N = 10 D = 3 bw = BetaWarp(D) data = npr.randn(N, D) assert_raises(UserWarning, bw.forward_pass, data)
def test_forward_pass(): npr.seed(1) N = 10 D = 3 alpha = Hyperparameter( initial_value = 2*np.ones(D), prior = priors.Lognormal(1.5), name = 'alpha' ) beta = Hyperparameter( initial_value = 0.5*np.ones(D), prior = priors.Lognormal(1.5), name = 'beta' ) bw = BetaWarp(D, alpha=alpha, beta=beta) data = 0.5*np.ones(D) assert np.all(bw.forward_pass(data) == 0.1161165235168156)
def test_construction(): npr.seed(1) D = 10 norm = Normalization(3) norm_inds = [1,3,5] bw = BetaWarp(2) bw_inds = [0,2] lin = Linear(3) lin_inds = [6,8,9] t = Transformer(D) t.add_layer((norm, norm_inds), (bw, bw_inds), (lin, lin_inds))
def test_grad(): npr.seed(1) eps = 1e-5 N = 10 M = 5 D = 5 beta_warp = BetaWarp(2) norm = Normalization(2) lin = Linear(D) transformer = Transformer(D) # Each entry is a tuple, (transformation, indices_it_acts_on) transformer.add_layer( (beta_warp, [0, 2]), (norm, [1, 4])) # This is crazy. We would never do this. # One transformation means apply to all dimensions. transformer.add_layer(lin) kernel = TransformKernel(Matern52(lin.num_factors), transformer) data1 = npr.rand(N, D) data2 = npr.rand(M, D) loss = np.sum(kernel.cross_cov(data1, data2)) dloss = kernel.cross_cov_grad_data(data1, data2).sum(0) dloss_est = np.zeros(dloss.shape) for i in xrange(M): for j in xrange(D): data2[i, j] += eps loss_1 = np.sum(kernel.cross_cov(data1, data2)) data2[i, j] -= 2 * eps loss_2 = np.sum(kernel.cross_cov(data1, data2)) data2[i, j] += eps dloss_est[i, j] = ((loss_1 - loss_2) / (2 * eps)) assert np.linalg.norm(dloss - dloss_est) < 1e-6