#print 'number of cut fibers', v p = probability_cut_nooverlaps(spec.l_x, fib.lf, sec) bin_mean = fib.n * p bin_stdv = sqrt(bin_mean * (1 - p)) bin_skew = (1 - 2 * p) / bin_stdv poiss_lambda = fib.n * p poiss_mean = poiss_lambda poiss_stdv = poiss_lambda ** (1 / 2.) poiss_skew = poiss_lambda ** (-1 / 2.) # Volume fraction Vf = fib._get_volume() Vc = spec._get_volume() vol_frac_V = Vf / Vc * 100 * fib.n #vol_frac_A = mean( v_vol_frac_A ) / Ac * 100 print "sec:", sec # , "vec ", v print " mean value = %.5f" % (matrix(v).mean()), "\t| stnd devia = %.5f" % (matrix(v).std()) , "\t| skewness ", skew(v) print " mean_binom = %.5f" % bin_mean , "\t| stdv_binom = %.5f" % bin_stdv , "\t| skew_binom ", bin_skew print " mean_poiss = %.5f" % poiss_mean , "\t| stdv_poiss = %.5f" % poiss_stdv , "\t| skew_poiss ", poiss_skew print " vol_frac_V = %.3f%%" % vol_frac_V # , "\t| vol_frac_A = %.3g%%" % vol_frac_A , "\t| v_V / v_A ", vol_frac_V / vol_frac_A #print Af #print Af / cos_cut[cos_cut != 0] #for i in range( 0, len( cos_cut[0] ) ): # if cos_cut[0][i] != 0:
def Simulation(): from traits.api import HasTraits, HasStrictTraits, Float, Property, cached_property, \ Instance, List, on_trait_change, Int, Tuple, Bool, \ DelegatesTo, Event, Enum, implements, Button, File, CFloat from traitsui.api import \ View, Item, Tabbed, VGroup, HGroup, ModelView, HSplit, VSplit from traitsui.menu import OKButton from math import e, sqrt, log, pi, floor from matplotlib.figure import Figure from matplotlib.pyplot import plot, hist, show from numpy import array, linspace, frompyfunc, zeros, column_stack, \ log as ln, append, logspace, hstack, sign, trapz, sin, cos, sqrt, \ ogrid, sort, nonzero, tanh, broadcast, ones_like, ones, arange, ndarray, diff, outer, \ copy, mean, exp, std, average, arctan, histogram2d, meshgrid, savetxt, transpose, var from pylab import savefig, plot, show, imshow, draw, colorbar, pcolor, subplot, title, legend from scipy.interpolate import interp1d from scipy.optimize import brentq, newton import scipy.interpolate from matplotlib.figure import Figure from matplotlib.axes import Axes from matplotlib.lines import Line2D from matplotlib.patches import Ellipse from matplotlib.backends.backend_agg import FigureCanvasAgg from numpy.random import rand from numpy import arccos, matrix, sum, arange from scipy.stats import binom, norm, skew, poisson from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Line3D from matplotlib.pyplot import figure from specimen_3D.fibers import Fibers, Specimen from specimen_3D.probability import probability_cut_nooverlaps from mayavi.tools.helper_functions import plot3d def Heaviside( x ): return ( sign( x ) + 1.0 ) / 2.0 # @todo: other types of crosssectional area def cut_area( df, lf, ss, phi, sec ): ''' Solve area of cut fibers (elliptic crosssection) ''' if ( 0 < phi < arctan( ( lf ) / df ) ) and ( ss - lf / 2. * cos( phi ) + df / 2. * sin( phi ) < sec < ss + lf / 2. * cos( phi ) - df / 2. * sin( phi ) ): return pi * df ** 2 / 4. / cos( phi ) if ( phi == pi / 2. ) and ( ss - df / 2. < sec < ss + df / 2. ): return lf * sqrt( df ** 2 - 4 * abs( sx - sec ) ** 2 ) if ( 0 < phi < arctan( ( lf ) / df ) ) and ( ss + lf / 2. * cos( phi ) - df / 2. * sin( phi ) < sec < ss + lf / 2. * cos( phi ) + df / 2. * sin( phi ) )and ( ss - lf / 2. * cos( phi ) - df / 2. * sin( phi ) < sec < ss - lf / 2. * cos( phi ) + df / 2. * sin( phi ) ): return 0 else: return 0#df * lf / sin( phi ) cut_area_func = frompyfunc( cut_area, 5, 1 ) def cut_fiber_distrib( L, l, phi ): if L >= 2 * l: return l * cos( phi ) * sin( phi ) / ( L - l * cos( phi ) ) / probability_cut_nooverlaps( L, l, 0 ) #if phi > 0 and phi < arccos( L / l / 2. ): #L > l and L < 2 * l * cos( phi ): else: return ( l * cos( phi ) * sin( phi ) / ( L - l * cos( phi ) ) / probability_cut_nooverlaps( L, l, 0 ) ) * Heaviside( phi - arccos( L / 2. / l ) ) * Heaviside( pi / 2. - phi ) + sin( phi ) / probability_cut_nooverlaps( L, l, 0 ) * Heaviside( phi ) * Heaviside( arccos( L / 2. / l ) - phi ) def le_sim( phi, x, lf ): ''' Solve embedded length l_e of fiber ''' return lf / 2. - abs( x ) / cos( phi ) # @todo: very short specimen def le( L, l ): ''' Solve embedded length l_e of fibes (including null values) (integral) ''' if L < l: #print 'very short specimen', return L / 4. if L < 2. * l: #print 'short specimen', return - L / 4. - L / 4. * ln( L / 2. ) + L / 4. * ln( L ) + 1 / 2. * l * ( 1 - L / ( 2. * l ) ) + 1 / 4. * L * ln( L / ( 2. * l ) ) + l / 4. if L >= 2. * l: #print 'long specimen', return - 1 / 4. * l - 1 / 4. * L * ln( L - l ) + 1 / 4. * L * ln( L ) # Configuration l_x = 0.1 # [m] l_y = 0.04 # [m] l_z = 0.04 # [m] vf = 0.015 # [-] lf = 0.017 # [m] df = 0.0003#0.175e-3 # [m] Ac = l_y * l_z Af = df ** 2 / 4. * pi print 'Area', Af n = int( Ac * l_x * vf / ( Af * lf ) ) print 'number of fibers in specimen volume', n spec = Specimen( l_x = l_x, l_y = l_y, l_z = l_z ) # fib = Fibers( spec = spec, n = n, lf = lf, df = df, overlaps = True ) # #23e-6 p = 1 / 2. * lf / l_x # probability_cut_nooverlaps( spec.l_x, fib.lf, 0. ) #p = 1 / 2. * lf / l_x print 'probability', p bin_mean = fib.n * p bin_var = bin_mean * ( 1 - p ) ek = bin_mean dk = bin_var std_k = sqrt( dk ) print 'E[k] ', ek, 'D[k] ', dk, 'std', std_k, 'cov', std_k / ek ep_1 = 7.21819420846 dp_1 = 17.3747024443 std_p_1 = sqrt( dp_1 ) print 'E[P1]', ep_1, 'D[P1]', dp_1, 'std', std_p_1, 'cov', std_p_1 / ep_1 ep_k = ep_1 * ek dp_k = ek * dp_1 + dk * ep_1 ** 2 std_p_k = sqrt( dp_k ) print 'E[Pk]', ep_k, 'D[Pk]', dp_k, 'std', std_p_k, 'cov', std_p_k / ep_k print '#' * 50 print 'E[P1]', ep_k, 'D[Pk]', dp_k, 'std', std_p_1 * sqrt( ek ), 'cov', std_p_1 * sqrt( ek ) / ep_k import matplotlib.pyplot as plt x = linspace( 0, ep_k + 3 * std_p_k, 1000 ) #plt.plot( x, norm( ep_k, std_p_k ).pdf( x ) ) n_sim = 100 #sec = rand( 1, n_sec ) * l_x v = [] # crosssectional position sec = .0 * spec.l_x / 2.#[-l_x * 0.99 / 2. , -l_x / 3., 0., l_x / 3. , l_x * 0.99 / 2. ]#linspace( 0, l_x, n_sec ) E = 200.e9 d = 0.0003 A = d ** 2 * pi / 4. tau = 1.76e6 * d * pi f = 0.03 def pullout2( w, le, phi ): w = w[None, :] le = le[:, None] phi = phi[:, None] d = sqrt( E * A * tau * w ) * exp( f * phi ) p = ones_like( w ) * tau * le * exp( f * phi ) return d * Heaviside( p - d ) + p * Heaviside( d - p ) p_plot = 0 def cut_fibers(): ''' Plot cut fibers (only ellipses), solve mean value of area and embedded length of cut fibers. Plot histogram of embedded length. ''' mask = matrix( fib.cut_func( sx, lx, sec ).astype( 'bool' ) ) sx_cut = sx[ mask ] sy_cut = sy[ mask ] sz_cut = sz[ mask ] phi_x_cut = phi_x[ mask ] theta_cut = theta[ mask ] A_cut = sum( cut_area_func( fib.df, fib.lf, sx_cut, phi_x_cut, sec ) ) le_cut = le_sim( phi_x_cut, abs( sx_cut - sec * ones_like( sx_cut ) ), fib.lf ) le_cut_null = le_sim( phi_x, abs( sx - sec * ones_like( sx ) ), fib.lf ) * fib.cut_func( sx, lx, sec ) # fig6 = figure( 6 ) # ax6 = Axes( fig6, [.1, .1, .8, .8] ) # hist( le_cut, 50, normed=0 ) # #hist( le_cut_null[0], 50, normed=0 ) # title( 'Embedded length l_e' ) # figure( 8 ) # n_mask = 10 # title( 'Histograms of $\phi$ fraction = $\pi/%i$' % n_mask ) # for i in range( 0, n_mask ): # mask1 = phi_x_cut > i * pi / 2. / n_mask # mask2 = phi_x_cut < ( i + 1 ) * pi / 2. / n_mask # pdf, bins, patches = hist( le_cut[mask1 * mask2], 50 , histtype='step', label='%i' % i ) # legend() #print mean( pdf ) # figure( 9 ) # title( 'Histogram of cut fibers angle' ) # xx = linspace( 0, pi / 2., 100 ) # hist( phi_x_cut, 50, normed=1 ) # plot( xx, sin( 2 * xx ), color='red', linewidth=4, label='overlaps' ) # plot( xx, cut_fiber_distrib( spec.l_x, fib.lf, xx ), color='green', linewidth=4, label='nooverlaps' ) # legend() # fig10 = figure( 10 ) # title( '2D histogram of le and phi_x' ) # ax10 = Axes3D( fig10 ) # bin = 20 # H, xedges, yedges = histogram2d( le_cut, phi_x_cut, ( bin, bin ), normed=1 ) # #extent = [xedges[0] * 100, xedges[-1] * 100, yedges[0], yedges[-1]] #[xedges[0], xedges[-1], yedges[0], yedges[-1]] # #im = imshow( H )#'binary', cmap='jet' , extent=extent # #im.set_interpolation( 'bilinear' ) # #colorbar() # x = ( xedges[range( 0, len( xedges ) - 1 )] + xedges[range( 1, len( xedges ) )] ) / 2. # y = ( yedges[range( 0, len( yedges ) - 1 )] + yedges[range( 1, len( yedges ) )] ) / 2. # #ax10.scatter3D( xedges.ravel(), yedges.ravel(), H.ravel() ) # xx = outer( x, ones( len( y ) ) ) # yy = outer( ones( len( x ) ), y ) # z = outer( ones( len( y ) ), sin( 2 * y ) ) / fib.lf * 2# * probability_cut_nooverlaps( spec.l_x, fib.lf, 0 )#* fib.n # zz = outer( ones( len( y ) ), cut_fiber_distrib( spec.l_x, fib.lf, y ) / fib.lf * 2 ) # ax10.plot_wireframe( xx, yy, H )#, rstride=1, cstride=1 # ax10.plot_wireframe( xx, yy, z , color='red', label='overlaps' ) # ax10.plot_wireframe( xx, yy, zz , color='green', label='nooverlaps' ) # legend() # print '%%%%%%%%%%%%%%%%%%%' # print '%%Embedded length%%' # print '%%%%%%%%%%%%%%%%%%%' # print 'probability cut fibers', probability_cut_nooverlaps( spec.l_x, fib.lf, 0. ) # print 'le_mean cut fibers (int/p) \t', le( spec.l_x, fib.lf ) / probability_cut_nooverlaps( spec.l_x, fib.lf, 0. ) # print 'le_mean of cut fibers (sim) \t', mean( le_cut ), '\t |\t standard deviation \t', std( le_cut ) # print 'include nulls (sim) \t\t', mean( le_cut_null ) # print 'E[le] (int) \t\t\t', le( spec.l_x, fib.lf ) # print 'cut fibers area', A_cut, 'Ac', spec._get_cross_area(), 'af', A_cut / spec._get_cross_area()*100, '%' PP = tau * le_cut * e ** ( f * phi_x_cut ) #print 'mean PP', mean( PP ) p_plot = pullout2( w, le_cut, phi_x_cut ) P = mean( p_plot , axis = 0 ) varP = var( pullout2( w, le_cut, phi_x_cut ), axis = 0 ) #print 'mean P', P[-1], 'variance P', varP[-1] return P, varP, p_plot P = [] V = [] w = linspace( 0, 0.016, 500 ) / 1000. for j in range( 0, n_sim ): fib.sim_i = j sx = fib.sx lx = fib.lx sy = fib.sy ly = fib.ly sz = fib.sz lz = fib.lz phi_x = fib.phi_x theta = fib.theta phi_y = fib.phi_y phi_z = fib.phi_z vec_cut = fib.cut_func( sx, lx, sec ) v.append( sum( vec_cut ) ) pp, vv, pplt = cut_fibers() P.append( pp ) V.append( vv ) #plt.figure( 100 ) #plt.plot( w, array( P ).T, color='red' ) #plt.plot( w, mean( array( P ), axis=0 ), linewidth=3, color='blue' ) print 'P', mean( P ), var( P ), std( P ) p = probability_cut_nooverlaps( spec.l_x, fib.lf, sec ) bin_mean = fib.n * p bin_stdv = sqrt( bin_mean * ( 1 - p ) ) bin_skew = ( 1 - 2 * p ) / bin_stdv poiss_lambda = fib.n * p poiss_mean = poiss_lambda poiss_stdv = poiss_lambda ** ( 1 / 2. ) poiss_skew = poiss_lambda ** ( -1 / 2. ) # Volume fraction Vf = fib._get_volume() Vc = spec._get_volume() vol_frac_V = Vf / Vc * 100 * fib.n #vol_frac_A = mean( v_vol_frac_A ) / Ac * 100 print "sec:", sec # , "vec ", v print " mean value = %.5f" % ( matrix( v ).mean() ), "\t| stnd devia = %.5f" % ( matrix( v ).std() ) , "\t| skewness ", skew( v ) print " mean_binom = %.5f" % bin_mean , "\t| stdv_binom = %.5f" % bin_stdv , "\t| skew_binom ", bin_skew print " mean_poiss = %.5f" % poiss_mean , "\t| stdv_poiss = %.5f" % poiss_stdv , "\t| skew_poiss ", poiss_skew print " vol_frac_V = %.3f%%" % vol_frac_V # , "\t| vol_frac_A = %.3g%%" % vol_frac_A , "\t| v_V / v_A ", vol_frac_V / vol_frac_A #print Af #print Af / cos_cut[cos_cut != 0] #for i in range( 0, len( cos_cut[0] ) ): # if cos_cut[0][i] != 0: # print cos_cut[0][i] return w, array( P ).T, mean( array( P ), axis = 0 ), array( V ).T, mean( array( V ), axis = 0 ), pplt