def test_arma(): """arma, check that rho is correct (appendix 10.A )and reproduce figure 10.2""" a, b, rho = arma_estimate(marple_data, 20, 20, 40) psd = arma2psd(A=a, B=b, rho=rho, NFFT=None) psd = arma2psd(A=a, B=b, rho=rho) try: psd = arma2psd(A=None, B=None, rho=rho) assert False except: assert True return psd
def test_arma(): """arma, check that rho is correct (appendix 10.A )and reproduce figure 10.2""" a,b, rho = arma_estimate(marple_data, 20, 20, 40) psd = arma2psd(A=a,B=b, rho=rho, NFFT=None) psd = arma2psd(A=a,B=b, rho=rho) try: psd = arma2psd(A=None, B=None, rho=rho) assert False except: assert True return psd
def test_arma_values(): a, b, rho = arma_estimate(marple_data, 15, 15, 30) assert_almost_equal(rho, 0.20050144053393698, 1e-6) assert_array_almost_equal(a, numpy.array([ 1.47857824-0.16358208j, 4.32139091-0.86231938j, 6.04115773-1.77030183j, 6.09285854-3.96367752j, 4.70699008-3.27199141j, 3.45467782-1.59183506j, 3.11230094-1.06510595j, 1.55237009+1.09800024j, 1.05148353+2.2720917j , 1.68042547+4.9737292j , 3.22899406+6.39981425j, 3.16557650+5.92783737j, 3.47120865+5.48246963j, 2.79508215+3.3238971j , 2.13174602+1.51034329j]), decimal=4)
def test_arma_values(): a, b, rho = arma_estimate(marple_data, 15, 15, 30) assert_almost_equal(rho, 0.20050144053393698, decimal=6) assert_array_almost_equal(a, numpy.array([ 1.47857824-0.16358208j, 4.32139091-0.86231938j, 6.04115773-1.77030183j, 6.09285854-3.96367752j, 4.70699008-3.27199141j, 3.45467782-1.59183506j, 3.11230094-1.06510595j, 1.55237009+1.09800024j, 1.05148353+2.2720917j , 1.68042547+4.9737292j , 3.22899406+6.39981425j, 3.16557650+5.92783737j, 3.47120865+5.48246963j, 2.79508215+3.3238971j , 2.13174602+1.51034329j ]), decimal=4)
def test_arma(): """arma, check that rho is correct (appendix 10.A )and reproduce figure 10.2""" a,b, rho = arma_estimate(marple_data, 20,20,40) psd = arma2psd(A=a,B=b, rho=rho) return psd
plt.xlabel('Frequencies') plt.ylabel('Power Spectral Density') #Part 2.3(B) btWin = signal.hamming(len(y_coordinates_3)) db20 = lambda x: np.log10(np.abs(x)) * 20 phi, f = blackmanTukey(y_coordinates_3, btWin, len(y_coordinates_3)) plt.figure() plt.plot(x_coordinates_3, db20(phi)) plt.title('Blackman-Tukey') plt.xlabel('Frequencies') plt.ylabel('Spectral Estimate') #Part 2.3(C) plt.figure() ar, ma, rho = arma_estimate(y_coordinates_3, 15, 15, 30) psd = arma2psd(ar, ma, rho=rho, NFFT=4096) plt.plot(10 * np.log10(psd / max(psd))) plt.axis([0, 4096, -80, 0]) plt.title('AutoRegressive') plt.xlabel('Frequencies') plt.ylabel('Spectral Estimate') plt.figure() plt.subplot(2, 1, 1) # Part 2.5 frequencies = 1000.0 # Sampling frequency time_stamps_2 = np.arange(1000) / frequencies signal_1 = np.sin(2 * np.pi * 100 * time_stamps_2) # with frequency of 100 plt.plot(time_stamps_2, signal_1, color='r', label='Signal_1')