def preprocess_data(self, x): # if IS_CUT_AUDIO: # x = [sample[0:MAX_AUDIO_DURATION*AUDIO_SAMPLE_RATE] for sample in x] # extract mfcc x = extract_mfcc_parallel(x, n_mfcc=96) if self.max_length is None: self.max_length = get_max_length(x) self.max_length = min(MAX_FRAME_NUM, self.max_length) x = pad_seq(x, pad_len=self.max_length) return x
def preprocess_data(self, x): if IS_CUT_AUDIO: x = [ sample[0:MAX_AUDIO_DURATION * AUDIO_SAMPLE_RATE] for sample in x ] # extract mfcc x_mfcc = extract_mfcc_parallel(x, n_mfcc=64) x_mel = extract_melspectrogram_parallel(x, n_mels=64, use_power_db=True) if self.max_length is None: self.max_length = get_max_length(x_mfcc) self.max_length = min(MAX_FRAME_NUM, self.max_length) x_mfcc = pad_seq(x_mfcc, self.max_length) x_mel = pad_seq(x_mel, self.max_length) x_feas = np.concatenate([x_mfcc, x_mel], axis=-1) x_feas = x_feas[:, :, :, np.newaxis] # x_mel = pad_seq(x_mel, self.max_length) # x_mel = x_mel[:, :, :, np.newaxis] return x_feas
def preprocess_data(self, x): # extract mfcc x = extract_mfcc(x) if self.max_length is None: self.max_length = get_max_length(x) x = pad_seq(x, self.max_length) # feature scale if self.mean is None or self.std is None: self.mean = np.mean(x) self.std = np.std(x) x = (x - self.mean) / self.std # calculate mean of mfcc x = np.mean(x, axis=-1) x = x[:, :, np.newaxis] return x
def preprocess_data(self, x): if IS_CUT_AUDIO: x = [ sample[0:MAX_AUDIO_DURATION * AUDIO_SAMPLE_RATE] for sample in x ] x_mel = extract_melspectrogram_parallel(x, n_mels=128, use_power_db=True) # x_mel = extract_mfcc_parallel(x, n_mfcc=96) if self.max_length is None: self.max_length = get_max_length(x_mel) self.max_length = min(MAX_FRAME_NUM, self.max_length) x_mel = pad_seq(x_mel, pad_len=self.max_length) x_mel = x_mel[:, :, :, np.newaxis] return x_mel
def preprocess_data(self, x): # mel-spectrogram parameters SR = 16000 N_FFT = 512 N_MELS = 96 HOP_LEN = 256 DURA = 21.84 # to make it 1366 frame. if IS_CUT_AUDIO: x = [sample[0:MAX_AUDIO_DURATION * AUDIO_SAMPLE_RATE] for sample in x] # x_mel = extract_melspectrogram_parallel(x, n_mels=128, use_power_db=True) x_mfcc = extract_mfcc_parallel(x, n_mfcc=96) if self.max_length is None: self.max_length = get_max_length(x_mfcc) self.max_length = min(MAX_FRAME_NUM, self.max_length) x_mfcc = pad_seq(x_mfcc, pad_len=self.max_length) x_mfcc = x_mfcc[:, :, :, np.newaxis] return x_mfcc
def preprocess_data(self, x): if IS_CUT_AUDIO: x = [ sample[0:MAX_AUDIO_DURATION * AUDIO_SAMPLE_RATE] for sample in x ] # extract mfcc x = extract_mfcc_parallel(x, n_mfcc=96) if self.max_length is None: self.max_length = get_max_length(x) x = pad_seq(x, self.max_length) # if self.scaler is None: # self.scaler = [] # for i in range(x.shape[2]): # self.scaler.append(StandardScaler().fit(x[:, :, i])) # for i in range(x.shape[2]): # x[:, :, i] = self.scaler[i].transform(x[:, :, i]) # feature scale # if self.mean is None or self.std is None: # self.mean = np.mean(x) # self.std = np.std(x) # x = (x - self.mean) / self.std # s0, s1, s2 = x.shape[0], x.shape[1], x.shape[2] # x = x.reshape(s0 * s1, s2) # if not self.scaler: # self.scaler = MinMaxScaler().fit(x) # x = self.scaler.transform(x) # x = x.reshape(s0, s1, s2) # 4 dimension? # (120, 437, 24) to (120, 437, 24, 1) # 120 is the number of instance # 437 is the max length # 24 frame in mfcc # log(f"max {np.max(x)} min {np.min(x)} mean {np.mean(x)}") x = x[:, :, :, np.newaxis] return x