def __init__(self, experiment_directory=None, config=None): super(Maiden, self).__init__(experiment_directory) # Privates self._device = None self._meta_config['exclude_attrs_from_save'] = [ 'data_loader', '_device' ] if config is not None: # TODO self.read_config_file(config) self.DEFAULT_DISPATCH = 'train' self.auto_setup() # register additional callbacks self.register_run_info_callback() self.register_reduce_dataset_callback() self.trainer.register_callback( SaveModelAtBestValidationScore( to_directory=self.checkpoint_directory, smoothness=0, verbose=True)) if self.get('trainer/criterion/losses/fgbg') is not None: self.build_fgbg_metric() # register anywhere logger for scalars register_logger(self, 'scalars')
def __init__(self, experiment_directory=None, config=None): super(VaeCremiExperiment, self).__init__(experiment_directory) # Privates self._device = None self._meta_config['exclude_attrs_from_save'] = [ 'data_loader', '_device' ] if config is not None: self.read_config_file(config) self.DEFAULT_DISPATCH = 'train' self.auto_setup() register_logger(self, 'scalars') # register_logger(self, 'embedding') # register_logger(self, 'image') offsets = self.get_default_offsets() self.set('global/offsets', offsets) self.set( 'loaders/general/volume_config/segmentation/affinity_config/offsets', offsets) self.model_class = list(self.get('model').keys())[0] self.set_devices()
def __init__(self, experiment_directory=None, config=None): super(BaseCremiExperiment, self).__init__(experiment_directory) # Privates self._device = None self._meta_config['exclude_attrs_from_save'] = [ 'data_loader', '_device' ] if config is not None: self.read_config_file(config) self.DEFAULT_DISPATCH = 'train' self.auto_setup() register_logger(self, 'scalars')
def __init__(self, experiment_directory=None, config=None): super(BaseCremiExperiment, self).__init__(experiment_directory) # Privates self._device = None self._meta_config['exclude_attrs_from_save'] = [ 'data_loader', '_device' ] if config is not None: self.read_config_file(config) self.DEFAULT_DISPATCH = 'train' self.auto_setup() # register_logger(FirelightLogger, "image") register_logger(self, 'scalars') # offsets = self.get_boundary_offsets() # self.set('global/offsets', offsets) # self.set('loaders/general/volume_config/segmentation/affinity_config/offsets', offsets) if "model_class" in self.get('model'): self.model_class = self.get('model/model_class') else: self.model_class = list(self.get('model').keys())[0] if self.get("loaders/general/master_config/downscale_and_crop" ) is not None: master_conf = self.get("loaders/general/master_config") ds_config = self.get( "loaders/general/master_config/downscale_and_crop") nb_tensors = len(ds_config) nb_inputs = self.get("model/model_kwargs/number_multiscale_inputs") nb_targets = nb_tensors - nb_inputs if "affinity_config" in master_conf: affs_config = deepcopy(master_conf.get("affinity_config", {})) if affs_config.get("use_dynamic_offsets", False): raise NotImplementedError nb_targets = 1 else: affs_config.pop("global", None) nb_targets = len(affs_config) self.set("trainer/num_targets", nb_targets) else: self.set("trainer/num_targets", 1) self.set_devices()