예제 #1
0
def test_BinaryRecordingExtractor():
    num_seg = 2
    num_chan = 3
    num_samples = 30
    sampling_frequency = 10000
    dtype = 'int16'

    files_path = [
        f'test_BinaryRecordingExtractor_{i}.raw' for i in range(num_seg)
    ]
    for i in range(num_seg):
        np.memmap(files_path[i],
                  dtype=dtype,
                  mode='w+',
                  shape=(num_samples, num_chan))

    rec = BinaryRecordingExtractor(files_path, sampling_frequency, num_chan,
                                   dtype)
    print(rec)

    files_path = [
        f'test_BinaryRecordingExtractor_copied_{i}.raw' for i in range(num_seg)
    ]
    BinaryRecordingExtractor.write_recording(rec, files_path)

    assert Path('test_BinaryRecordingExtractor_copied_0.raw').is_file()
예제 #2
0
    def __init__(self, file_path):
        # load params file related to the given shybrid recording
        assert self.installed, self.installation_mesg
        assert Path(file_path).suffix in [
            ".yml", ".yaml"
        ], "The 'file_path' should be a yaml file!"
        params = sbio.get_params(file_path)['data']
        file_path = Path(file_path)

        # create a shybrid probe object
        probe = sbprb.Probe(params['probe'])
        nb_channels = probe.total_nb_channels

        # translate the byte ordering
        byte_order = params['order']
        if byte_order == 'C':
            time_axis = 1
        elif byte_order == 'F':
            time_axis = 0

        bin_file = file_path.parent / f"{file_path.stem}.bin"

        # piggyback on binary data recording extractor
        BinaryRecordingExtractor.__init__(self,
                                          files_path=bin_file,
                                          sampling_frequency=float(
                                              params['fs']),
                                          num_chan=nb_channels,
                                          dtype=params['dtype'],
                                          time_axis=time_axis)

        # load probe file
        probegroup = read_prb(params['probe'])
        self.set_probegroup(probegroup, in_place=True)
        self._kwargs = {'file_path': str(Path(file_path).absolute())}
예제 #3
0
    def _setup_recording(cls, recording, output_folder, params, verbose):
        source_dir = Path(__file__).parent

        # alias to params
        p = params

        experiment_name = output_folder / 'recording'

        # save prb file
        prb_file = output_folder / 'probe.prb'
        probegroup = recording.get_probegroup()
        write_prb(prb_file, probegroup, radius=p['adjacency_radius'])

        # source file
        if isinstance(
                recording,
                BinaryRecordingExtractor) and recording._kwargs['offset'] == 0:
            # no need to copy
            raw_filename = str(
                Path(recording._kwargs['files_path'][0]).resolve())
            dtype = recording._kwargs['dtype']
        else:
            # save binary file (chunk by hcunk) into a new file
            raw_filename = output_folder / 'recording.dat'
            dtype = 'int16'
            BinaryRecordingExtractor.write_recording(
                recording,
                files_path=[raw_filename],
                dtype='int16',
                total_memory=p["total_memory"],
                n_jobs=p["n_jobs_bin"],
                verbose=False,
                progress_bar=verbose)

        if p['detect_sign'] < 0:
            detect_sign = 'negative'
        elif p['detect_sign'] > 0:
            detect_sign = 'positive'
        else:
            detect_sign = 'both'

        # set up klusta config file
        with (source_dir / 'config_default.prm').open('r') as f:
            klusta_config = f.readlines()

        # Note: should use format with dict approach here
        klusta_config = ''.join(klusta_config).format(
            experiment_name, prb_file, raw_filename,
            float(recording.get_sampling_frequency()),
            recording.get_num_channels(), "'{}'".format(dtype),
            p['threshold_strong_std_factor'], p['threshold_weak_std_factor'],
            "'" + detect_sign + "'", p['extract_s_before'],
            p['extract_s_after'], p['n_features_per_channel'],
            p['pca_n_waveforms_max'], p['num_starting_clusters'])

        with (output_folder / 'config.prm').open('w') as f:
            f.writelines(klusta_config)
예제 #4
0
def test_ChannelSliceRecording():
    num_seg = 2
    num_chan = 3
    num_samples = 30
    sampling_frequency = 10000
    dtype = 'int16'

    file_paths = [f'test_BinaryRecordingExtractor_{i}.raw' for i in range(num_seg)]
    for i in range(num_seg):
        traces = np.memmap(file_paths[i], dtype=dtype, mode='w+', shape=(num_samples, num_chan))
        traces[:] = np.arange(3)[None, :]
    rec = BinaryRecordingExtractor(file_paths, sampling_frequency, num_chan, dtype)

    # keep original ids
    rec_sliced = ChannelSliceRecording(rec, channel_ids=[0, 2])
    assert np.all(rec_sliced.get_channel_ids() == [0, 2])
    traces = rec_sliced.get_traces(segment_index=1)
    assert traces.shape[1] == 2
    traces = rec_sliced.get_traces(segment_index=1, channel_ids=[0, 2])
    assert traces.shape[1] == 2
    traces = rec_sliced.get_traces(segment_index=1, channel_ids=[2, 0])
    assert traces.shape[1] == 2
    
    assert np.allclose(rec_sliced.get_times(0), rec.get_times(0))
    
    # with channel ids renaming
    rec_sliced2 = ChannelSliceRecording(rec, channel_ids=[0, 2], renamed_channel_ids=[3, 4])
    assert np.all(rec_sliced2.get_channel_ids() == [3, 4])
    traces = rec_sliced2.get_traces(segment_index=1)
    assert traces.shape[1] == 2
    assert np.all(traces[:, 0] == 0)
    assert np.all(traces[:, 1] == 2)

    traces = rec_sliced2.get_traces(segment_index=1, channel_ids=[4, 3])
    assert traces.shape[1] == 2
    assert np.all(traces[:, 0] == 2)
    assert np.all(traces[:, 1] == 0)

    # with probe and after save()
    probe = pi.generate_linear_probe(num_elec=num_chan)
    probe.set_device_channel_indices(np.arange(num_chan))
    rec_p = rec.set_probe(probe)
    rec_sliced3 = ChannelSliceRecording(rec_p, channel_ids=[0, 2], renamed_channel_ids=[3, 4])
    probe3 = rec_sliced3.get_probe()
    locations3 = probe3.contact_positions
    cache_folder = Path('./my_cache_folder')
    folder = cache_folder / 'sliced_recording'
    rec_saved = rec_sliced3.save(folder=folder, chunk_size=10, n_jobs=2)
    probe = rec_saved.get_probe()
    assert np.array_equal(locations3, rec_saved.get_channel_locations())
    traces3 = rec_saved.get_traces(segment_index=0)
    assert np.all(traces3[:, 0] == 0)
    assert np.all(traces3[:, 1] == 2)
예제 #5
0
    def _setup_recording(cls, recording, output_folder, params, verbose):
        import tridesclous as tdc

        # save prb file
        probegroup = recording.get_probegroup()
        prb_file = output_folder / 'probe.prb'
        write_prb(prb_file, probegroup)

        num_seg = recording.get_num_segments()
        sr = recording.get_sampling_frequency()

        # source file
        if isinstance(recording, BinaryRecordingExtractor
                      ) and recording._kwargs['time_axis'] == 0:
            # no need to copy
            kwargs = recording._kwargs
            file_paths = kwargs['file_paths']
            dtype = kwargs['dtype']
            num_chan = kwargs['num_chan']
            file_offset = kwargs['file_offset']
        else:
            if verbose:
                print('Local copy of recording')
            # save binary file (chunk by chunk) into a new file
            num_chan = recording.get_num_channels()
            dtype = recording.get_dtype().str
            file_paths = [
                str(output_folder / f'raw_signals_{i}.raw')
                for i in range(num_seg)
            ]
            BinaryRecordingExtractor.write_recording(
                recording,
                file_paths=file_paths,
                dtype=dtype,
                total_memory=params["total_memory"],
                n_jobs=params["n_jobs_bin"],
                verbose=False,
                progress_bar=verbose)
            file_offset = 0

        # initialize source and probe file
        tdc_dataio = tdc.DataIO(dirname=str(output_folder))

        tdc_dataio.set_data_source(type='RawData',
                                   filenames=file_paths,
                                   dtype=dtype,
                                   sample_rate=float(sr),
                                   total_channel=int(num_chan),
                                   offset=int(file_offset))
        tdc_dataio.set_probe_file(str(prb_file))
        if verbose:
            print(tdc_dataio)
예제 #6
0
def test_ChannelSliceRecording():
    num_seg = 2
    num_chan = 3
    num_samples = 30
    sampling_frequency = 10000
    dtype = 'int16'

    files_path = [
        f'test_BinaryRecordingExtractor_{i}.raw' for i in range(num_seg)
    ]
    for i in range(num_seg):
        traces = np.memmap(files_path[i],
                           dtype=dtype,
                           mode='w+',
                           shape=(num_samples, num_chan))
        traces[:] = np.arange(3)[None, :]
    rec = BinaryRecordingExtractor(files_path, sampling_frequency, num_chan,
                                   dtype)

    # keep original ids
    rec_sliced = ChannelSliceRecording(rec, channel_ids=[0, 2])
    assert np.all(rec_sliced.get_channel_ids() == [0, 2])
    traces = rec_sliced.get_traces(segment_index=1)
    assert traces.shape[1] == 2
    traces = rec_sliced.get_traces(segment_index=1, channel_ids=[0, 2])
    assert traces.shape[1] == 2
    traces = rec_sliced.get_traces(segment_index=1, channel_ids=[2, 0])
    assert traces.shape[1] == 2

    # with channel ids renaming
    rec_sliced2 = ChannelSliceRecording(rec,
                                        channel_ids=[0, 2],
                                        renamed_channel_ids=[3, 4])
    assert np.all(rec_sliced2.get_channel_ids() == [3, 4])
    traces = rec_sliced2.get_traces(segment_index=1)
    assert traces.shape[1] == 2
    assert np.all(traces[:, 0] == 0)
    assert np.all(traces[:, 1] == 2)

    traces = rec_sliced2.get_traces(segment_index=1, channel_ids=[4, 3])
    assert traces.shape[1] == 2
    assert np.all(traces[:, 0] == 2)
    assert np.all(traces[:, 1] == 0)
예제 #7
0
def test_BaseRecording():
    num_seg = 2
    num_chan = 3
    num_samples = 30
    sampling_frequency = 10000
    dtype = 'int16'

    files_path = [f'test_base_recording_{i}.raw' for i in range(num_seg)]
    for i in range(num_seg):
        a = np.memmap(files_path[i],
                      dtype=dtype,
                      mode='w+',
                      shape=(num_samples, num_chan))
        a[:] = np.random.randn(*a.shape).astype(dtype)

    rec = BinaryRecordingExtractor(files_path, sampling_frequency, num_chan,
                                   dtype)
    print(rec)

    assert rec.get_num_segments() == 2
    assert rec.get_num_channels() == 3

    assert np.all(rec.ids_to_indices([0, 1, 2]) == [0, 1, 2])
    assert np.all(
        rec.ids_to_indices([0, 1, 2], prefer_slice=True) == slice(0, 3, None))

    # annotations / properties
    rec.annotate(yep='yop')
    assert rec.get_annotation('yep') == 'yop'

    rec.set_property('quality', [1., 3.3, np.nan])
    values = rec.get_property('quality')
    assert np.all(values[:2] == [
        1.,
        3.3,
    ])

    # dump/load dict
    d = rec.to_dict()
    rec2 = BaseExtractor.from_dict(d)
    rec3 = load_extractor(d)

    # dump/load json
    rec.dump_to_json('test_BaseRecording.json')
    rec2 = BaseExtractor.load('test_BaseRecording.json')
    rec3 = load_extractor('test_BaseRecording.json')

    # dump/load pickle
    rec.dump_to_pickle('test_BaseRecording.pkl')
    rec2 = BaseExtractor.load('test_BaseRecording.pkl')
    rec3 = load_extractor('test_BaseRecording.pkl')

    # cache to binary
    cache_folder = Path('./my_cache_folder')
    folder = cache_folder / 'simple_recording'
    rec.save(format='binary', folder=folder)
    rec2 = BaseExtractor.load_from_folder(folder)
    assert 'quality' in rec2.get_property_keys()
    # but also possible
    rec3 = BaseExtractor.load('./my_cache_folder/simple_recording')

    # cache to memory
    rec4 = rec3.save(format='memory')

    traces4 = rec4.get_traces(segment_index=0)
    traces = rec.get_traces(segment_index=0)
    assert np.array_equal(traces4, traces)

    # cache joblib several jobs
    rec.save(name='simple_recording_2', chunk_size=10, n_jobs=4)

    # set/get Probe only 2 channels
    probe = Probe(ndim=2)
    positions = [[0., 0.], [0., 15.], [0, 30.]]
    probe.set_contacts(positions=positions,
                       shapes='circle',
                       shape_params={'radius': 5})
    probe.set_device_channel_indices([2, -1, 0])
    probe.create_auto_shape()

    rec2 = rec.set_probe(probe, group_mode='by_shank')
    rec2 = rec.set_probe(probe, group_mode='by_probe')
    positions2 = rec2.get_channel_locations()
    assert np.array_equal(positions2, [[0, 30.], [0., 0.]])

    probe2 = rec2.get_probe()
    positions3 = probe2.contact_positions
    assert np.array_equal(positions2, positions3)

    # from probeinterface.plotting import plot_probe_group, plot_probe
    # import matplotlib.pyplot as plt
    # plot_probe(probe)
    # plot_probe(probe2)
    # plt.show()

    # test return_scale
    sampling_frequency = 30000
    traces = np.zeros((1000, 5), dtype='int16')
    rec_int16 = NumpyRecording([traces], sampling_frequency)
    assert rec_int16.get_dtype() == 'int16'
    print(rec_int16)
    traces_int16 = rec_int16.get_traces()
    assert traces_int16.dtype == 'int16'
    # return_scaled raise error when no gain_to_uV/offset_to_uV properties
    with pytest.raises(ValueError):
        traces_float32 = rec_int16.get_traces(return_scaled=True)
    rec_int16.set_property('gain_to_uV', [.195] * 5)
    rec_int16.set_property('offset_to_uV', [0.] * 5)
    traces_float32 = rec_int16.get_traces(return_scaled=True)
    assert traces_float32.dtype == 'float32'
예제 #8
0
    def _setup_recording(cls, recording, output_folder, params, verbose):
        p = params

        source_dir = Path(__file__).parent
        config_default_location = os.path.join(source_dir, 'config_default.yaml')

        with open(config_default_location) as file:
            yass_params = yaml.load(file, Loader=yaml.FullLoader)        

        # update root folder
        yass_params['data']['root_folder'] = str(output_folder.absolute())

        # geometry
        probe_file_txt = os.path.join(output_folder, 'geom.txt')
        geom_txt = recording.get_channel_locations()
        np.savetxt(probe_file_txt, geom_txt)
        
        #  params
        yass_params['recordings']['sampling_rate'] = recording.get_sampling_frequency()
        yass_params['recordings']['n_channels'] = recording.get_num_channels()

        # save to int16 raw
        input_file_path = os.path.join(output_folder, 'data.bin')
        dtype = 'int16'  # HARD CODE THIS FOR YASS
        input_file_path = output_folder / 'data.bin'
        BinaryRecordingExtractor.write_recording(recording, files_path=[input_file_path],
                                                 dtype=dtype, verbose=False,
                                                 total_memory=p["total_memory"], n_jobs=p["n_jobs_bin"])
 
        


        retrain = False
        if params['neural_nets_path'] is None:
            params['neural_nets_path'] = str(output_folder / 'tmp' / 'nn_train')
            retrain = True

        # MERGE yass_params with self.params that could be changed by the user
        merge_params = merge_params_dict(yass_params, params)


        # to yaml
        fname_config = output_folder / 'config.yaml'
        with open(fname_config, 'w') as file:
            documents = yaml.dump(merge_params, file)

        # RunNN training on exisiting
        neural_nets_path = p['neural_nets_path']

        if retrain:
            # retrain NNs
            YassSorter.train(recording, output_folder, verbose)
            
            # update NN folder location
            neural_nets_path = output_folder / 'tmp' / 'nn_train' 
        else:
            #  load previous NNs
            if verbose:
                print("USING PREVIOUSLY TRAINED NNs FROM THIS LOCATION: ", params['neural_nets_path'])
            # use previuosly trained NN folder location
            neural_nets_path = Path(params['neural_nets_path'])
        
        merge_params['neuralnetwork']['denoise']['filename'] = str(neural_nets_path.absolute() / 'denoise.pt')
        merge_params['neuralnetwork']['detect']['filename'] = str(neural_nets_path.absolute() / 'detect.pt')
        from pprint import pprint
        pprint(merge_params)
        exit()

        # to yaml again (for NNs update)
        fname_config = output_folder / 'config.yaml'
        with open(fname_config, 'w') as file:
            documents = yaml.dump(merge_params, file)
def test_BaseRecording():
    num_seg = 2
    num_chan = 3
    num_samples = 30
    sampling_frequency = 10000
    dtype = 'int16'

    file_paths = [f'test_base_recording_{i}.raw' for i in range(num_seg)]
    for i in range(num_seg):
        a = np.memmap(file_paths[i],
                      dtype=dtype,
                      mode='w+',
                      shape=(num_samples, num_chan))
        a[:] = np.random.randn(*a.shape).astype(dtype)
    rec = BinaryRecordingExtractor(file_paths, sampling_frequency, num_chan,
                                   dtype)

    assert rec.get_num_segments() == 2
    assert rec.get_num_channels() == 3

    assert np.all(rec.ids_to_indices([0, 1, 2]) == [0, 1, 2])
    assert np.all(
        rec.ids_to_indices([0, 1, 2], prefer_slice=True) == slice(0, 3, None))

    # annotations / properties
    rec.annotate(yep='yop')
    assert rec.get_annotation('yep') == 'yop'

    rec.set_channel_groups([0, 0, 1])

    rec.set_property('quality', [1., 3.3, np.nan])
    values = rec.get_property('quality')
    assert np.all(values[:2] == [
        1.,
        3.3,
    ])

    # missing property
    rec.set_property('string_property', ["ciao", "bello"], ids=[0, 1])
    values = rec.get_property('string_property')
    assert values[2] == ""

    # setting an different type raises an error
    assert_raises(Exception,
                  rec.set_property,
                  key='string_property_nan',
                  values=["ciao", "bello"],
                  ids=[0, 1],
                  missing_value=np.nan)

    # int properties without missing values raise an error
    assert_raises(Exception,
                  rec.set_property,
                  key='int_property',
                  values=[5, 6],
                  ids=[1, 2])

    rec.set_property('int_property', [5, 6], ids=[1, 2], missing_value=200)
    values = rec.get_property('int_property')
    assert values.dtype.kind == "i"

    times0 = rec.get_times(segment_index=0)

    # dump/load dict
    d = rec.to_dict()
    rec2 = BaseExtractor.from_dict(d)
    rec3 = load_extractor(d)

    # dump/load json
    rec.dump_to_json('test_BaseRecording.json')
    rec2 = BaseExtractor.load('test_BaseRecording.json')
    rec3 = load_extractor('test_BaseRecording.json')

    # dump/load pickle
    rec.dump_to_pickle('test_BaseRecording.pkl')
    rec2 = BaseExtractor.load('test_BaseRecording.pkl')
    rec3 = load_extractor('test_BaseRecording.pkl')

    # dump/load dict - relative
    d = rec.to_dict(relative_to=".")
    rec2 = BaseExtractor.from_dict(d, base_folder=".")
    rec3 = load_extractor(d, base_folder=".")

    # dump/load json
    rec.dump_to_json('test_BaseRecording_rel.json', relative_to=".")
    rec2 = BaseExtractor.load('test_BaseRecording_rel.json', base_folder=".")
    rec3 = load_extractor('test_BaseRecording_rel.json', base_folder=".")

    # cache to binary
    cache_folder = Path('./my_cache_folder')
    folder = cache_folder / 'simple_recording'
    rec.save(format='binary', folder=folder)
    rec2 = BaseExtractor.load_from_folder(folder)
    assert 'quality' in rec2.get_property_keys()
    values = rec2.get_property('quality')
    assert values[0] == 1.
    assert values[1] == 3.3
    assert np.isnan(values[2])

    groups = rec2.get_channel_groups()
    assert np.array_equal(groups, [0, 0, 1])

    # but also possible
    rec3 = BaseExtractor.load('./my_cache_folder/simple_recording')

    # cache to memory
    rec4 = rec3.save(format='memory')

    traces4 = rec4.get_traces(segment_index=0)
    traces = rec.get_traces(segment_index=0)
    assert np.array_equal(traces4, traces)

    # cache joblib several jobs
    folder = cache_folder / 'simple_recording2'
    rec2 = rec.save(folder=folder, chunk_size=10, n_jobs=4)
    traces2 = rec2.get_traces(segment_index=0)

    # set/get Probe only 2 channels
    probe = Probe(ndim=2)
    positions = [[0., 0.], [0., 15.], [0, 30.]]
    probe.set_contacts(positions=positions,
                       shapes='circle',
                       shape_params={'radius': 5})
    probe.set_device_channel_indices([2, -1, 0])
    probe.create_auto_shape()

    rec_p = rec.set_probe(probe, group_mode='by_shank')
    rec_p = rec.set_probe(probe, group_mode='by_probe')
    positions2 = rec_p.get_channel_locations()
    assert np.array_equal(positions2, [[0, 30.], [0., 0.]])

    probe2 = rec_p.get_probe()
    positions3 = probe2.contact_positions
    assert np.array_equal(positions2, positions3)

    assert np.array_equal(probe2.device_channel_indices, [0, 1])

    # test save with probe
    folder = cache_folder / 'simple_recording3'
    rec2 = rec_p.save(folder=folder, chunk_size=10, n_jobs=2)
    rec2 = load_extractor(folder)
    probe2 = rec2.get_probe()
    assert np.array_equal(probe2.contact_positions, [[0, 30.], [0., 0.]])
    positions2 = rec_p.get_channel_locations()
    assert np.array_equal(positions2, [[0, 30.], [0., 0.]])
    traces2 = rec2.get_traces(segment_index=0)
    assert np.array_equal(traces2, rec_p.get_traces(segment_index=0))

    # from probeinterface.plotting import plot_probe_group, plot_probe
    # import matplotlib.pyplot as plt
    # plot_probe(probe)
    # plot_probe(probe2)
    # plt.show()

    # test return_scale
    sampling_frequency = 30000
    traces = np.zeros((1000, 5), dtype='int16')
    rec_int16 = NumpyRecording([traces], sampling_frequency)
    assert rec_int16.get_dtype() == 'int16'

    traces_int16 = rec_int16.get_traces()
    assert traces_int16.dtype == 'int16'
    # return_scaled raise error when no gain_to_uV/offset_to_uV properties
    with pytest.raises(ValueError):
        traces_float32 = rec_int16.get_traces(return_scaled=True)
    rec_int16.set_property('gain_to_uV', [.195] * 5)
    rec_int16.set_property('offset_to_uV', [0.] * 5)
    traces_float32 = rec_int16.get_traces(return_scaled=True)
    assert traces_float32.dtype == 'float32'

    # test with t_start
    rec = BinaryRecordingExtractor(file_paths,
                                   sampling_frequency,
                                   num_chan,
                                   dtype,
                                   t_starts=np.arange(num_seg) * 10.)
    times1 = rec.get_times(1)
    folder = cache_folder / 'recording_with_t_start'
    rec2 = rec.save(folder=folder)
    assert np.allclose(times1, rec2.get_times(1))

    # test with time_vector
    rec = BinaryRecordingExtractor(file_paths, sampling_frequency, num_chan,
                                   dtype)
    rec.set_times(np.arange(num_samples) / sampling_frequency + 30.,
                  segment_index=0)
    rec.set_times(np.arange(num_samples) / sampling_frequency + 40.,
                  segment_index=1)
    times1 = rec.get_times(1)
    folder = cache_folder / 'recording_with_times'
    rec2 = rec.save(folder=folder)
    assert np.allclose(times1, rec2.get_times(1))
    rec3 = load_extractor(folder)
    assert np.allclose(times1, rec3.get_times(1))