def __init__(self, config_path:str=None, sorters:list=[]) -> None: config_path = Path(config_path) self._config_files = [config_path / f for f in os.listdir(config_path) if os.path.isfile(config_path / f)] assert set(sorters).issubset(set(ss.available_sorters())), """ Please check the input sorter names and the installed sorters. """ self._sorter_names = sorters
############################################################################## # Using the :code:`toolkit`, you can perform pre-processing on the recordings. Each pre-processing function also returns # a :code:`RecordingExtractor`, which makes it easy to build pipelines. Here, we filter the recording and apply common # median reference (CMR) recording_f = st.preprocessing.bandpass_filter(recording, freq_min=300, freq_max=6000) recording_cmr = st.preprocessing.common_reference(recording_f, reference='median') ############################################################################## # Now you are ready to spikesort using the :code:`sorters` module! # Let's first check which sorters are implemented and which are installed print('Available sorters', ss.available_sorters()) print('Installed sorters', ss.installed_sorter_list) ############################################################################## # The :code:`ss.installed_sorter_list` will list the sorters installed in the machine. Each spike sorter # is implemented as a class. We can see we have Klusta and Mountainsort4 installed. # Spike sorters come with a set of parameters that users can change. The available parameters are dictionaries and # can be accessed with: print(ss.get_default_params('mountainsort4')) print(ss.get_default_params('klusta')) ############################################################################## # Let's run mountainsort4 and change one of the parameter, the detection_threshold: sorting_MS4 = ss.run_mountainsort4(recording=recording_cmr, detect_threshold=6)
""" import spikeinterface.extractors as se import spikeinterface.sorters as ss ############################################################################## # First, let's create a toy example: recording, sorting_true = se.example_datasets.toy_example(duration=10, seed=0) ############################################################################## # Check available sorters # -------------------------- # print(ss.available_sorters()) ############################################################################## # This will list the sorters available through SpikeInterface. To see which sorters are installed on the machine # you can run: print(ss.installed_sorters()) ############################################################################## # Change sorter parameters # ----------------------------------- # default_ms4_params = ss.Mountainsort4Sorter.default_params() print(default_ms4_params)
def list_sorters(): """Print a list of spikeinterface sorters.""" print('Available sorters', ss.available_sorters()) print('Installed sorters', ss.installed_sorter_list)