def seg_norm(self, in_prefix=''):
     def_tpms = np.zeros((3,1), dtype=np.object)
     spm_path = spm_info.spm_path
     def_tpms[0] = pjoin(spm_path, 'tpm', 'grey.nii'),
     def_tpms[1] = pjoin(spm_path, 'tpm', 'white.nii'),
     def_tpms[2] = pjoin(spm_path, 'tpm', 'csf.nii')
     data = np.zeros((1,), dtype=object)
     data[0] = self.data_def['anatomical']
     sninfo = make_job('spatial', 'preproc', {
             'data': data,
             'output':{
                 'GM':fltcols([0,0,1]),
                 'WM':fltcols([0,0,1]),
                 'CSF':fltcols([0,0,0]),
                 'biascor':1.0,
                 'cleanup':False,
                 },
             'opts':{
                 'tpm':def_tpms,
                 'ngaus':fltcols([2,2,2,4]),
                 'regtype':'mni',
                 'warpreg':1.0,
                 'warpco':25.0,
                 'biasreg':0.0001,
                 'biasfwhm':60.0,
                 'samp':3.0,
                 'msk':np.array([], dtype=object),
                 }
             })
     run_jobdef(sninfo)
     return in_prefix
 def norm_write(self, in_prefix='', out_prefix='w'):
     sess_scans = scans_for_fnames(
         fnames_presuffix(self.data_def['functionals'], in_prefix))
     matname = fname_presuffix(self.data_def['anatomical'],
                             suffix='_seg_sn.mat',
                             use_ext=False)
     subj = {
         'matname': np.zeros((1,), dtype=object),
         'resample': np.vstack(sess_scans.flat),
         }
     subj['matname'][0] = matname
     roptions = {
         'preserve':False,
         'bb':np.array([[-78,-112, -50],[78,76,85.0]]),
         'vox':fltcols([2.0,2.0,2.0]),
         'interp':1.0,
         'wrap':[0.0,0.0,0.0],
         'prefix': out_prefix,
         }
     nwinfo = make_job('spatial', 'normalise', [{
             'write':{
                 'subj': subj,
                 'roptions': roptions,
                 }
             }])
     run_jobdef(nwinfo)
     # knock out the list of images, replacing with only one
     subj['resample'] = np.zeros((1,), dtype=object)
     subj['resample'][0] = self.data_def['anatomical']
     roptions['interp'] = 4.0
     run_jobdef(nwinfo)
     return out_prefix + in_prefix