def linked_kernel_density_estimation(cls, n_instances, features, node_dict=None, alpha=0.1 # ,batch_size=1, # sparse=False ): """ WRITEME """ n_features = len(features) # the top one is a sum layer with a single node root_node = SumNode() root_layer = SumLayerLinked([root_node]) # second one is a product layer with n_instances nodes product_nodes = [ProductNode() for i in range(n_instances)] product_layer = ProductLayerLinked(product_nodes) # linking them to the root node for prod_node in product_nodes: root_node.add_child(prod_node, 1. / n_instances) # last layer can be a categorical smoothed input # or sum_layer + categorical indicator input input_layer = None layers = None n_leaf_nodes = n_features * n_instances if node_dict is None: # creating a sum_layer with n_leaf_nodes sum_nodes = [SumNode() for i in range(n_leaf_nodes)] # store them into a layer sum_layer = SumLayerLinked(sum_nodes) # linking them to the products above for i, prod_node in enumerate(product_nodes): for j in range(n_features): # getting the next n_features nodes prod_node.add_child(sum_nodes[i * n_features + j]) # now creating the indicator nodes input_layer = \ CategoricalIndicatorLayerLinked(vars=features) # linking the sum nodes to the indicator vars for i, sum_node in enumerate(sum_nodes): # getting the feature id j = i % n_features # and thus its number of values n_values = features[j] # getting the indices of indicators start_index = sum(features[:j]) end_index = start_index + n_values indicators = [node for node in input_layer.nodes() ][start_index:end_index] for ind_node in indicators: sum_node.add_child(ind_node, 1. / n_values) # storing levels layers = [sum_layer, product_layer, root_layer] else: # create a categorical smoothed layer input_layer = \ CategoricalSmoothedLayerLinked(vars=features, node_dicts=node_dict, alpha=alpha) # it shall contain n_leaf_nodes nodes smooth_nodes = list(input_layer.nodes()) assert len(smooth_nodes) == n_leaf_nodes # linking it for i, prod_node in enumerate(product_nodes): for j in range(n_features): # getting the next n_features nodes prod_node.add_child(smooth_nodes[i * n_features + j]) # setting the used levels layers = [product_layer, root_layer] # create the spn from levels kern_spn = SpnLinked(input_layer, layers) return kern_spn
def linked_naive_factorization(cls, features, node_dict=None, alpha=0.1): """ WRITEME """ n_features = len(features) # create an input layer input_layer = None layers = None # first layer is a product layer with n_feature children root_node = ProductNode() root_layer = ProductLayerLinked([root_node]) # second is a sum node on an indicator layer if node_dict is None: # creating sum nodes sum_nodes = [SumNode() for i in range(n_features)] # linking to the root for node in sum_nodes: root_node.add_child(node) # store into a level sum_layer = SumLayerLinked(sum_nodes) # now create an indicator layer input_layer = CategoricalIndicatorLayerLinked(vars=features) # and linking it # TODO make this a function for i, sum_node in enumerate(sum_nodes): # getting the feature id j = i % n_features # and thus its number of values n_values = features[j] # getting the indices of indicators start_index = sum(features[:j]) end_index = start_index + n_values indicators = [node for node in input_layer.nodes() ][start_index:end_index] for ind_node in indicators: sum_node.add_child(ind_node, 1. / n_values) # collecting layers layers = [sum_layer, root_layer] # or a categorical smoothed layer else: input_layer = CategoricalSmoothedLayerLinked(vars=features, node_dicts=node_dict, alpha=alpha) # it shall contain n_features nodes smooth_nodes = list(input_layer.nodes()) assert len(smooth_nodes) == n_features for node in smooth_nodes: root_node.add_child(node) # set layers accordingly layers = [root_layer] # build the spn naive_fact_spn = SpnLinked(input_layer, layers) return naive_fact_spn
def linked_kernel_density_estimation(cls, n_instances, features, node_dict=None, alpha=0.1 # ,batch_size=1, # sparse=False ): """ WRITEME """ n_features = len(features) # the top one is a sum layer with a single node root_node = SumNode() root_layer = SumLayerLinked([root_node]) # second one is a product layer with n_instances nodes product_nodes = [ProductNode() for i in range(n_instances)] product_layer = ProductLayerLinked(product_nodes) # linking them to the root node for prod_node in product_nodes: root_node.add_child(prod_node, 1. / n_instances) # last layer can be a categorical smoothed input # or sum_layer + categorical indicator input input_layer = None layers = None n_leaf_nodes = n_features * n_instances if node_dict is None: # creating a sum_layer with n_leaf_nodes sum_nodes = [SumNode() for i in range(n_leaf_nodes)] # store them into a layer sum_layer = SumLayerLinked(sum_nodes) # linking them to the products above for i, prod_node in enumerate(product_nodes): for j in range(n_features): # getting the next n_features nodes prod_node.add_child(sum_nodes[i * n_features + j]) # now creating the indicator nodes input_layer = \ CategoricalIndicatorLayerLinked(vars=features) # linking the sum nodes to the indicator vars for i, sum_node in enumerate(sum_nodes): # getting the feature id j = i % n_features # and thus its number of values n_values = features[j] # getting the indices of indicators start_index = sum(features[:j]) end_index = start_index + n_values indicators = [node for node in input_layer.nodes()][start_index:end_index] for ind_node in indicators: sum_node.add_child(ind_node, 1. / n_values) # storing levels layers = [sum_layer, product_layer, root_layer] else: # create a categorical smoothed layer input_layer = \ CategoricalSmoothedLayerLinked(vars=features, node_dicts=node_dict, alpha=alpha) # it shall contain n_leaf_nodes nodes smooth_nodes = list(input_layer.nodes()) assert len(smooth_nodes) == n_leaf_nodes # linking it for i, prod_node in enumerate(product_nodes): for j in range(n_features): # getting the next n_features nodes prod_node.add_child(smooth_nodes[i * n_features + j]) # setting the used levels layers = [product_layer, root_layer] # create the spn from levels kern_spn = SpnLinked(input_layer, layers) return kern_spn
def create_valid_toy_spn(): # root layer whole_scope = frozenset({0, 1, 2, 3}) root_node = SumNode(var_scope=whole_scope) root_layer = SumLayer([root_node]) # prod layer prod_node_1 = ProductNode(var_scope=whole_scope) prod_node_2 = ProductNode(var_scope=whole_scope) prod_layer_1 = ProductLayer([prod_node_1, prod_node_2]) root_node.add_child(prod_node_1, 0.5) root_node.add_child(prod_node_2, 0.5) # sum layer scope_1 = frozenset({0, 1}) scope_2 = frozenset({2}) scope_3 = frozenset({3}) scope_4 = frozenset({2, 3}) sum_node_1 = SumNode(var_scope=scope_1) sum_node_2 = SumNode(var_scope=scope_2) sum_node_3 = SumNode(var_scope=scope_3) sum_node_4 = SumNode(var_scope=scope_4) prod_node_1.add_child(sum_node_1) prod_node_1.add_child(sum_node_2) prod_node_1.add_child(sum_node_3) prod_node_2.add_child(sum_node_1) prod_node_2.add_child(sum_node_4) sum_layer_1 = SumLayer([sum_node_1, sum_node_2, sum_node_3, sum_node_4]) # another product layer prod_node_3 = ProductNode(var_scope=scope_1) prod_node_4 = ProductNode(var_scope=scope_1) prod_node_5 = ProductNode(var_scope=scope_4) prod_node_6 = ProductNode(var_scope=scope_4) sum_node_1.add_child(prod_node_3, 0.5) sum_node_1.add_child(prod_node_4, 0.5) sum_node_4.add_child(prod_node_5, 0.5) sum_node_4.add_child(prod_node_6, 0.5) prod_layer_2 = ProductLayer([prod_node_3, prod_node_4, prod_node_5, prod_node_6]) # last sum one scope_5 = frozenset({0}) scope_6 = frozenset({1}) sum_node_5 = SumNode(var_scope=scope_5) sum_node_6 = SumNode(var_scope=scope_6) sum_node_7 = SumNode(var_scope=scope_5) sum_node_8 = SumNode(var_scope=scope_6) sum_node_9 = SumNode(var_scope=scope_2) sum_node_10 = SumNode(var_scope=scope_3) sum_node_11 = SumNode(var_scope=scope_2) sum_node_12 = SumNode(var_scope=scope_3) prod_node_3.add_child(sum_node_5) prod_node_3.add_child(sum_node_6) prod_node_4.add_child(sum_node_7) prod_node_4.add_child(sum_node_8) prod_node_5.add_child(sum_node_9) prod_node_5.add_child(sum_node_10) prod_node_6.add_child(sum_node_11) prod_node_6.add_child(sum_node_12) sum_layer_2 = SumLayer([sum_node_5, sum_node_6, sum_node_7, sum_node_8, sum_node_9, sum_node_10, sum_node_11, sum_node_12]) # input layer vars = [2, 3, 2, 2] input_layer = CategoricalIndicatorLayer(vars=vars) last_sum_nodes = [sum_node_2, sum_node_3, sum_node_5, sum_node_6, sum_node_7, sum_node_8, sum_node_9, sum_node_10, sum_node_11, sum_node_12] for sum_node in last_sum_nodes: (var_scope,) = sum_node.var_scope for input_node in input_layer.nodes(): if input_node.var == var_scope: sum_node.add_child(input_node, 1.0) spn = Spn(input_layer=input_layer, layers=[sum_layer_2, prod_layer_2, sum_layer_1, prod_layer_1, root_layer]) # print(spn) return spn
def linked_naive_factorization(cls, features, node_dict=None, alpha=0.1): """ WRITEME """ n_features = len(features) # create an input layer input_layer = None layers = None # first layer is a product layer with n_feature children root_node = ProductNode() root_layer = ProductLayerLinked([root_node]) # second is a sum node on an indicator layer if node_dict is None: # creating sum nodes sum_nodes = [SumNode() for i in range(n_features)] # linking to the root for node in sum_nodes: root_node.add_child(node) # store into a level sum_layer = SumLayerLinked(sum_nodes) # now create an indicator layer input_layer = CategoricalIndicatorLayerLinked(vars=features) # and linking it # TODO make this a function for i, sum_node in enumerate(sum_nodes): # getting the feature id j = i % n_features # and thus its number of values n_values = features[j] # getting the indices of indicators start_index = sum(features[:j]) end_index = start_index + n_values indicators = [node for node in input_layer.nodes()][start_index:end_index] for ind_node in indicators: sum_node.add_child(ind_node, 1. / n_values) # collecting layers layers = [sum_layer, root_layer] # or a categorical smoothed layer else: input_layer = CategoricalSmoothedLayerLinked(vars=features, node_dicts=node_dict, alpha=alpha) # it shall contain n_features nodes smooth_nodes = list(input_layer.nodes()) assert len(smooth_nodes) == n_features for node in smooth_nodes: root_node.add_child(node) # set layers accordingly layers = [root_layer] # build the spn naive_fact_spn = SpnLinked(input_layer, layers) return naive_fact_spn