예제 #1
0
def test_sum_node_is_complete():
    # create a sum node with a scope
    scope = frozenset({0, 2, 7, 13})
    sum_node = SumNode(var_scope=scope)

    # creating children with same scope
    children = [ProductNode(var_scope=scope) for i in range(4)]
    for prod_node in children:
        sum_node.add_child(prod_node, 1.0)

    assert sum_node.is_complete()

    # now altering one child's scope with one less var
    children[0].var_scope = frozenset({0, 7, 13})

    assert sum_node.is_complete() is False

    # now adding one more
    children[0].var_scope = scope
    children[3].var_scope = frozenset({0, 2, 7, 13, 3})

    assert not sum_node.is_complete()

    # now checking with indicator input nodes
    var = 4
    sum_node = SumNode(var_scope=frozenset({var}))
    children = [CategoricalIndicatorNode(var=var, var_val=i)
                for i in range(4)]
    for input_node in children:
        sum_node.add_child(input_node, 1.0)

    assert sum_node.is_complete()
예제 #2
0
파일: test_spn.py 프로젝트: willis-hu/spyn
def test_spn_set_get_weights():
    # create a simple spn
    root_node = SumNode()
    root_layer = SumLayer([root_node])

    prod_node_1 = ProductNode()
    prod_node_2 = ProductNode()
    root_node.add_child(prod_node_1, 0.5)
    root_node.add_child(prod_node_2, 0.5)
    prod_layer = ProductLayer([prod_node_1, prod_node_2])

    sum_node_1 = SumNode()
    sum_node_2 = SumNode()
    sum_node_3 = SumNode()
    prod_node_1.add_child(sum_node_1)
    prod_node_1.add_child(sum_node_2)
    prod_node_2.add_child(sum_node_2)
    prod_node_2.add_child(sum_node_3)
    sum_layer = SumLayer([sum_node_1, sum_node_2, sum_node_3])

    ind_node_1 = CategoricalIndicatorNode(var=0, var_val=1)
    ind_node_2 = CategoricalIndicatorNode(var=0, var_val=1)
    ind_node_3 = CategoricalIndicatorNode(var=0, var_val=1)
    ind_node_4 = CategoricalIndicatorNode(var=0, var_val=1)
    ind_node_5 = CategoricalIndicatorNode(var=0, var_val=1)
    input_layer = CategoricalInputLayer(
        nodes=[ind_node_1, ind_node_2, ind_node_3, ind_node_4, ind_node_5])
    sum_node_1.add_child(ind_node_1, 0.2)
    sum_node_1.add_child(ind_node_2, 0.2)
    sum_node_2.add_child(ind_node_2, 0.2)
    sum_node_2.add_child(ind_node_3, 0.2)
    sum_node_2.add_child(ind_node_4, 0.2)
    sum_node_3.add_child(ind_node_4, 0.2)
    sum_node_3.add_child(ind_node_5, 0.2)

    spn = Spn(input_layer=input_layer,
              layers=[sum_layer, prod_layer, root_layer])

    print(spn)

    # storing these weights
    curr_weights = spn.get_weights()

    # setting the new weights
    spn.set_weights(weights_ds)

    # getting them again
    new_weights = spn.get_weights()

    # comparing them
    assert new_weights == weights_ds

    # now setting back the previous one
    spn.set_weights(curr_weights)

    # getting them back again
    old_weights = spn.get_weights()

    # and checking
    assert old_weights == curr_weights
예제 #3
0
def test_sum_node_create_and_eval():
    # create child nodes
    child1 = Node()
    val1 = 1.
    child1.set_val(val1)

    child2 = Node()
    val2 = 1.
    child2.set_val(val2)

    # create sum node and adding children to it
    sum_node = SumNode()
    weight1 = 0.8
    weight2 = 0.2
    sum_node.add_child(child1, weight1)
    sum_node.add_child(child2, weight2)
    assert len(sum_node.children) == 2
    assert len(sum_node.weights) == 2
    assert len(sum_node.log_weights) == 2
    log_weights = [log(weight1), log(weight2)]
    assert log_weights == sum_node.log_weights

    print(sum_node)

    # evaluating
    sum_node.eval()
    print(sum_node.log_val)
    assert_almost_equal(sum_node.log_val,
                        log(val1 * weight1 + val2 * weight2),
                        places=15)

    # changing values 1,0
    val1 = 1.
    child1.set_val(val1)
    val2 = 0.
    child2.set_val(val2)

    # evaluating
    sum_node.eval()
    print(sum_node.log_val)
    assert_almost_equal(sum_node.log_val,
                        log(val1 * weight1 + val2 * weight2),
                        places=15)

    # changing values 0,0 -> LOG_ZERO
    val1 = 0.
    child1.set_val(val1)
    val2 = 0.
    child2.set_val(val2)

    # evaluating
    sum_node.eval()
    print(sum_node.log_val)
    assert_almost_equal(sum_node.log_val,
                        LOG_ZERO,
                        places=15)
예제 #4
0
def test_sum_node_create_and_eval_keras():

    n_trials = 100
    for i in range(n_trials):

        n_children = numpy.random.randint(1, 100)
        print('n children', n_children)
        children = [Node() for c in range(n_children)]
        weights = numpy.random.rand(n_children)
        weights = weights / weights.sum()

        #
        # create sum node and adding children to it
        sum_node = SumNode()

        for child, w in zip(children, weights):
            sum_node.add_child(child, w)
            child.log_vals = K.placeholder(ndim=2)

        assert len(sum_node.children) == n_children
        assert len(sum_node.weights) == n_children
        assert len(sum_node.log_weights) == n_children

        print(sum_node)

        #
        # evaluating for fake probabilities
        n_instances = numpy.random.randint(1, 100)
        print('n instances', n_instances)
        probs = numpy.random.rand(n_instances, n_children)  # .astype(theano.config.floatX)
        log_probs = numpy.log(probs)

        log_vals = []
        for d in range(n_instances):
            for c, child in enumerate(children):
                child.set_val(probs[d, c])

            sum_node.eval()
            print('sum node eval')
            print(sum_node.log_val)
            log_vals.append(sum_node.log_val)

        #
        # now theano
        sum_node.build_k()
        eval_sum_node_f = K.function(inputs=[c.log_vals for c in children],
                                     outputs=[sum_node.log_vals])
        keras_log_vals = eval_sum_node_f([log_probs[:, c].reshape(log_probs.shape[0], 1)
                                          for c in range(n_children)])[0]
        print(keras_log_vals)

        assert_array_almost_equal(numpy.array(log_vals).reshape(log_probs.shape[0], 1),
                                  keras_log_vals,
                                  decimal=4)
예제 #5
0
def build_spn_layers(input_layer):

    # this is ugly... TODO try to beutify this process
    ind1 = input_layer._nodes[0]
    ind2 = input_layer._nodes[1]
    ind3 = input_layer._nodes[2]
    ind4 = input_layer._nodes[3]
    ind5 = input_layer._nodes[4]
    ind6 = input_layer._nodes[5]
    ind7 = input_layer._nodes[6]
    ind8 = input_layer._nodes[7]

    # creating sum nodes
    sum_node1 = SumNode()
    sum_node2 = SumNode()
    sum_node3 = SumNode()
    sum_node4 = SumNode()

    # linking them with nodes
    sum_node1.add_child(ind1, 0.5)
    sum_node1.add_child(ind2, 0.5)
    sum_node2.add_child(ind3, 0.1)
    sum_node2.add_child(ind4, 0.9)
    sum_node3.add_child(ind5, 0.3)
    sum_node3.add_child(ind6, 0.7)
    sum_node4.add_child(ind7, 0.6)
    sum_node4.add_child(ind8, 0.4)

    # creating sumlayer
    sum_layer = SumLayer([sum_node1,
                          sum_node2,
                          sum_node3,
                          sum_node4])

    # creating product nodes
    prod_node1 = ProductNode()
    prod_node2 = ProductNode()
    prod_node3 = ProductNode()

    # linking them to sum nodes
    prod_node1.add_child(sum_node1)
    prod_node1.add_child(sum_node2)
    prod_node2.add_child(sum_node2)
    prod_node2.add_child(sum_node3)
    prod_node3.add_child(sum_node3)
    prod_node3.add_child(sum_node4)

    # creating a product layer
    prod_layer = ProductLayer([prod_node1,
                               prod_node2,
                               prod_node3])

    return sum_layer, prod_layer
예제 #6
0
def test_sum_node_normalize():
    # create child nodes
    child1 = Node()
    val1 = 1.
    child1.set_val(val1)

    child2 = Node()
    val2 = 1.
    child2.set_val(val2)

    # create sum node and adding children to it
    sum_node = SumNode()
    weight1 = 1.
    weight2 = 0.2
    weights = [weight1, weight2]
    sum_node.add_child(child1, weight1)
    sum_node.add_child(child2, weight2)
    un_sum = sum(weights)

    # normalizing
    sum_node.normalize()
    assert len(sum_node.children) == 2
    assert len(sum_node.weights) == 2
    assert len(sum_node.log_weights) == 2

    # checking weight sum
    w_sum = sum(sum_node.weights)
    assert w_sum == 1.

    # and check the correct values
    normal_sum = [weight / un_sum for weight in weights]
    print(normal_sum)
    assert normal_sum == sum_node.weights

    # checking log_weights
    log_weights = [log(weight) for weight in normal_sum]
    print(log_weights)
    assert log_weights == sum_node.log_weights
예제 #7
0
def test_sum_layer_is_complete():
    # creating two scopes and two sum nodes
    scope1 = frozenset({0, 2, 3})
    scope2 = frozenset({10})
    sum_node_1 = SumNode(var_scope=scope1)
    sum_node_2 = SumNode(var_scope=scope2)

    # adding product nodes as children to the first, indicator the second
    for i in range(4):
        sum_node_1.add_child(ProductNode(var_scope=scope1), 1.0)
        sum_node_2.add_child(CategoricalIndicatorNode(var=10, var_val=i), 1.0)

    # creating sum layer
    sum_layer = SumLayer(nodes=[sum_node_1, sum_node_2])

    assert sum_layer.is_complete()

    # now with errors in scope
    scope3 = frozenset({6})
    sum_node_1 = SumNode(var_scope=scope1)
    sum_node_2 = SumNode(var_scope=scope3)

    # adding product nodes as children to the first, indicator the second
    for i in range(4):
        sum_node_1.add_child(ProductNode(var_scope=scope1), 1.0)
        sum_node_2.add_child(CategoricalIndicatorNode(var=10, var_val=i), 1.0)

    # creating sum layer
    sum_layer = SumLayer(nodes=[sum_node_1, sum_node_2])

    assert not sum_layer.is_complete()

    sum_node_2.var_scope = scope2

    assert sum_layer.is_complete()

    sum_node_2.children[3].var_scope = scope3

    assert not sum_layer.is_complete()
예제 #8
0
def test_linked_to_theano_indicator():
    # creating single nodes
    root = SumNode()

    prod1 = ProductNode()
    prod2 = ProductNode()
    prod3 = ProductNode()

    sum1 = SumNode()
    sum2 = SumNode()
    sum3 = SumNode()
    sum4 = SumNode()

    ind1 = CategoricalIndicatorNode(var=0, var_val=0)
    ind2 = CategoricalIndicatorNode(var=0, var_val=1)
    ind3 = CategoricalIndicatorNode(var=1, var_val=0)
    ind4 = CategoricalIndicatorNode(var=1, var_val=1)
    ind5 = CategoricalIndicatorNode(var=2, var_val=0)
    ind6 = CategoricalIndicatorNode(var=2, var_val=1)
    ind7 = CategoricalIndicatorNode(var=2, var_val=2)
    ind8 = CategoricalIndicatorNode(var=3, var_val=0)
    ind9 = CategoricalIndicatorNode(var=3, var_val=1)
    ind10 = CategoricalIndicatorNode(var=3, var_val=2)
    ind11 = CategoricalIndicatorNode(var=3, var_val=3)

    prod4 = ProductNode()
    prod5 = ProductNode()
    prod6 = ProductNode()
    prod7 = ProductNode()

    # linking nodes
    root.add_child(prod1, 0.3)
    root. add_child(prod2, 0.3)
    root.add_child(prod3, 0.4)

    prod1.add_child(sum1)
    prod1.add_child(sum2)
    prod2.add_child(ind7)
    prod2.add_child(ind8)
    prod2.add_child(ind11)
    prod3.add_child(sum3)
    prod3.add_child(sum4)

    sum1.add_child(ind1, 0.3)
    sum1.add_child(ind2, 0.3)
    sum1.add_child(prod4, 0.4)

    sum2.add_child(ind2, 0.5)
    sum2.add_child(prod4, 0.2)
    sum2.add_child(prod5, 0.3)

    sum3.add_child(prod6, 0.5)
    sum3.add_child(prod7, 0.5)
    sum4.add_child(prod6, 0.5)
    sum4.add_child(prod7, 0.5)

    prod4.add_child(ind3)
    prod4.add_child(ind4)
    prod5.add_child(ind5)
    prod5.add_child(ind6)
    prod6.add_child(ind9)
    prod6.add_child(ind10)
    prod7.add_child(ind9)
    prod7.add_child(ind10)

    # building layers from nodes
    root_layer = SumLayerLinked([root])
    prod_layer = ProductLayerLinked([prod1, prod2, prod3])
    sum_layer = SumLayerLinked([sum1, sum2, sum3, sum4])
    aprod_layer = ProductLayerLinked([prod4, prod5, prod6, prod7])
    ind_layer = CategoricalIndicatorLayer(nodes=[ind1, ind2,
                                                 ind3, ind4,
                                                 ind5, ind6,
                                                 ind7, ind8,
                                                 ind9, ind10,
                                                 ind11])

    # creating the linked spn
    spn_linked = SpnLinked(input_layer=ind_layer,
                           layers=[aprod_layer,
                                   sum_layer,
                                   prod_layer,
                                   root_layer])

    print(spn_linked)

    # converting to theano repr
    spn_theano = SpnFactory.linked_to_theano(spn_linked)
    print(spn_theano)

    # time for some inference comparison
    for instance in I:
        print('linked')
        res_l = spn_linked.eval(instance)
        print(res_l)
        print('theano')
        res_t = spn_theano.eval(instance)
        print(res_t)
        assert_array_almost_equal(res_l, res_t)
예제 #9
0
def test_spn_mpe_eval_and_traversal():
    # create initial layer
    node1 = Node()
    node2 = Node()
    node3 = Node()
    node4 = Node()
    node5 = Node()

    input_layer = CategoricalInputLayer([node1, node2,
                                         node3, node4,
                                         node5])

    # top layer made by 3 sum nodes
    sum1 = SumNode()
    sum2 = SumNode()
    sum3 = SumNode()

    # linking to input nodes
    weight11 = 0.3
    sum1.add_child(node1, weight11)
    weight12 = 0.3
    sum1.add_child(node2, weight12)
    weight13 = 0.4
    sum1.add_child(node3, weight13)

    weight22 = 0.15
    sum2.add_child(node2, weight22)
    weight23 = 0.15
    sum2.add_child(node3, weight23)
    weight24 = 0.7
    sum2.add_child(node4, weight24)

    weight33 = 0.4
    sum3.add_child(node3, weight33)
    weight34 = 0.25
    sum3.add_child(node4, weight34)
    weight35 = 0.35
    sum3.add_child(node5, weight35)

    sum_layer = SumLayer([sum1, sum2, sum3])

    # another layer with two product nodes
    prod1 = ProductNode()
    prod2 = ProductNode()

    prod1.add_child(sum1)
    prod1.add_child(sum2)
    prod2.add_child(sum2)
    prod2.add_child(sum3)

    prod_layer = ProductLayer([prod1, prod2])

    # root layer, double sum
    root1 = SumNode()
    root2 = SumNode()

    weightr11 = 0.5
    root1.add_child(prod1, weightr11)
    weightr12 = 0.5
    root1.add_child(prod2, weightr12)

    weightr21 = 0.9
    root2.add_child(prod1, weightr21)
    weightr22 = 0.1
    root2.add_child(prod2, weightr22)

    root_layer = SumLayer([root1, root2])

    # create the spn
    spn = Spn(input_layer=input_layer,
              layers=[sum_layer, prod_layer, root_layer])

    print('===================')
    print(spn)
    print('===================')

    # setting the input values
    val1 = 0.0
    node1.set_val(val1)
    val2 = 0.5
    node2.set_val(val2)
    val3 = 0.3
    node3.set_val(val3)
    val4 = 1.0
    node4.set_val(val4)
    val5 = 0.0
    node5.set_val(val5)

    # evaluating the spn with MPE inference
    res = spn.test_mpe_eval()
    print('spn eval\'d', res)

    # testing it
    #
    # testing the max layer
    max1 = max(val1 * weight11,
               val2 * weight12,
               val3 * weight13)
    max2 = max(val2 * weight22,
               val3 * weight23,
               val4 * weight24)
    max3 = max(val3 * weight33,
               val4 * weight34,
               val5 * weight35)
    log_max1 = log(max1) if not numpy.isclose(max1, 0) else LOG_ZERO
    log_max2 = log(max2) if not numpy.isclose(max2, 0) else LOG_ZERO
    log_max3 = log(max3) if not numpy.isclose(max3, 0) else LOG_ZERO

    print('expected max vals {0}, {1}, {2}'.format(log_max1,
                                                   log_max2,
                                                   log_max3))
    print('found    max vals {0}, {1}, {2}'.format(sum1.log_val,
                                                   sum2.log_val,
                                                   sum3.log_val))
    if IS_LOG_ZERO(log_max1):
        assert IS_LOG_ZERO(sum1.log_val)
    else:
        assert_almost_equal(log_max1, sum1.log_val)
    if IS_LOG_ZERO(log_max2):
        assert IS_LOG_ZERO(sum2.log_val)
    else:
        assert_almost_equal(log_max2, sum2.log_val)
    if IS_LOG_ZERO(log_max3):
        assert IS_LOG_ZERO(sum3.log_val)
    else:
        assert_almost_equal(log_max3, sum3.log_val)

    # product layer is assumed to be fine, but let's check
    # it anyways
    prod_val1 = max1 * max2
    prod_val2 = max2 * max3
    prod_log_val1 = log_max1 + log_max2
    prod_log_val2 = log_max2 + log_max3

    print('exp prod vals {0}, {1}'.format(prod_log_val1,
                                          prod_log_val2))
    print('rea prod vals {0}, {1}'.format(prod1.log_val,
                                          prod2.log_val))
    if IS_LOG_ZERO(prod_log_val1):
        assert IS_LOG_ZERO(prod1.log_val)
    else:
        assert_almost_equal(prod_log_val1, prod1.log_val)

    if IS_LOG_ZERO(prod_log_val2):
        assert IS_LOG_ZERO(prod2.log_val)
    else:
        assert_almost_equal(prod_log_val2, prod2.log_val)

    # root layer, again a sum layer
    root_val1 = max(prod_val1 * weightr11,
                    prod_val2 * weightr12)
    root_val2 = max(prod_val1 * weightr21,
                    prod_val2 * weightr22)
    root_log_val1 = log(root_val1) if not numpy.isclose(
        root_val1, 0) else LOG_ZERO
    root_log_val2 = log(root_val2) if not numpy.isclose(
        root_val2, 0) else LOG_ZERO

    print('exp root vals {0}, {1}'.format(root_log_val1,
                                          root_log_val2))
    print('found ro vals {0}, {1}'.format(root1.log_val,
                                          root2.log_val))

    if IS_LOG_ZERO(root_log_val1):
        assert IS_LOG_ZERO(root1.log_val)
    else:
        assert_almost_equal(root_log_val1, root1.log_val)
    if IS_LOG_ZERO(root_log_val2):
        assert IS_LOG_ZERO(root2.log_val)
    else:
        assert_almost_equal(root_log_val2, root2.log_val)

    # now we are traversing top down the net
    print('mpe traversing')
    for i, j, k in spn.mpe_traversal():
        print(i, j, k)
예제 #10
0
def create_valid_toy_spn():
    # root layer
    whole_scope = frozenset({0, 1, 2, 3})
    root_node = SumNode(var_scope=whole_scope)
    root_layer = SumLayer([root_node])

    # prod layer
    prod_node_1 = ProductNode(var_scope=whole_scope)
    prod_node_2 = ProductNode(var_scope=whole_scope)
    prod_layer_1 = ProductLayer([prod_node_1, prod_node_2])

    root_node.add_child(prod_node_1, 0.5)
    root_node.add_child(prod_node_2, 0.5)

    # sum layer
    scope_1 = frozenset({0, 1})
    scope_2 = frozenset({2})
    scope_3 = frozenset({3})
    scope_4 = frozenset({2, 3})

    sum_node_1 = SumNode(var_scope=scope_1)
    sum_node_2 = SumNode(var_scope=scope_2)
    sum_node_3 = SumNode(var_scope=scope_3)
    sum_node_4 = SumNode(var_scope=scope_4)

    prod_node_1.add_child(sum_node_1)
    prod_node_1.add_child(sum_node_2)
    prod_node_1.add_child(sum_node_3)

    prod_node_2.add_child(sum_node_1)
    prod_node_2.add_child(sum_node_4)

    sum_layer_1 = SumLayer([sum_node_1, sum_node_2,
                            sum_node_3, sum_node_4])

    # another product layer
    prod_node_3 = ProductNode(var_scope=scope_1)
    prod_node_4 = ProductNode(var_scope=scope_1)

    prod_node_5 = ProductNode(var_scope=scope_4)
    prod_node_6 = ProductNode(var_scope=scope_4)

    sum_node_1.add_child(prod_node_3, 0.5)
    sum_node_1.add_child(prod_node_4, 0.5)

    sum_node_4.add_child(prod_node_5, 0.5)
    sum_node_4.add_child(prod_node_6, 0.5)

    prod_layer_2 = ProductLayer([prod_node_3, prod_node_4,
                                 prod_node_5, prod_node_6])

    # last sum one
    scope_5 = frozenset({0})
    scope_6 = frozenset({1})

    sum_node_5 = SumNode(var_scope=scope_5)
    sum_node_6 = SumNode(var_scope=scope_6)
    sum_node_7 = SumNode(var_scope=scope_5)
    sum_node_8 = SumNode(var_scope=scope_6)

    sum_node_9 = SumNode(var_scope=scope_2)
    sum_node_10 = SumNode(var_scope=scope_3)
    sum_node_11 = SumNode(var_scope=scope_2)
    sum_node_12 = SumNode(var_scope=scope_3)

    prod_node_3.add_child(sum_node_5)
    prod_node_3.add_child(sum_node_6)
    prod_node_4.add_child(sum_node_7)
    prod_node_4.add_child(sum_node_8)

    prod_node_5.add_child(sum_node_9)
    prod_node_5.add_child(sum_node_10)
    prod_node_6.add_child(sum_node_11)
    prod_node_6.add_child(sum_node_12)

    sum_layer_2 = SumLayer([sum_node_5, sum_node_6,
                            sum_node_7, sum_node_8,
                            sum_node_9, sum_node_10,
                            sum_node_11, sum_node_12])

    # input layer
    vars = [2, 3, 2, 2]
    input_layer = CategoricalIndicatorLayer(vars=vars)
    last_sum_nodes = [sum_node_2, sum_node_3,
                      sum_node_5, sum_node_6,
                      sum_node_7, sum_node_8,
                      sum_node_9, sum_node_10,
                      sum_node_11, sum_node_12]
    for sum_node in last_sum_nodes:
        (var_scope,) = sum_node.var_scope
        for input_node in input_layer.nodes():
            if input_node.var == var_scope:
                sum_node.add_child(input_node, 1.0)

    spn = Spn(input_layer=input_layer,
              layers=[sum_layer_2, prod_layer_2,
                      sum_layer_1, prod_layer_1,
                      root_layer])

    # print(spn)
    return spn
예제 #11
0
    def linked_kernel_density_estimation(cls,
                                         n_instances,
                                         features,
                                         node_dict=None,
                                         alpha=0.1
                                         # ,batch_size=1,
                                         # sparse=False
                                         ):
        """
        WRITEME
        """

        n_features = len(features)

        # the top one is a sum layer with a single node
        root_node = SumNode()
        root_layer = SumLayerLinked([root_node])

        # second one is a product layer with n_instances nodes
        product_nodes = [ProductNode() for i in range(n_instances)]
        product_layer = ProductLayerLinked(product_nodes)
        # linking them to the root node
        for prod_node in product_nodes:
            root_node.add_child(prod_node, 1. / n_instances)

        # last layer can be a categorical smoothed input
        # or sum_layer + categorical indicator input

        input_layer = None
        layers = None
        n_leaf_nodes = n_features * n_instances

        if node_dict is None:
            # creating a sum_layer with n_leaf_nodes
            sum_nodes = [SumNode() for i in range(n_leaf_nodes)]
            # store them into a layer
            sum_layer = SumLayerLinked(sum_nodes)
            # linking them to the products above
            for i, prod_node in enumerate(product_nodes):
                for j in range(n_features):
                    # getting the next n_features nodes
                    prod_node.add_child(sum_nodes[i * n_features + j])
            # now creating the indicator nodes
            input_layer = \
                CategoricalIndicatorLayerLinked(vars=features)
            # linking the sum nodes to the indicator vars
            for i, sum_node in enumerate(sum_nodes):
                # getting the feature id
                j = i % n_features
                # and thus its number of values
                n_values = features[j]
                # getting the indices of indicators
                start_index = sum(features[:j])
                end_index = start_index + n_values
                indicators = [node for node
                              in input_layer.nodes()][start_index:end_index]
                for ind_node in indicators:
                    sum_node.add_child(ind_node, 1. / n_values)

            # storing levels
            layers = [sum_layer, product_layer,
                      root_layer]
        else:
            # create a categorical smoothed layer
            input_layer = \
                CategoricalSmoothedLayerLinked(vars=features,
                                               node_dicts=node_dict,
                                               alpha=alpha)
            # it shall contain n_leaf_nodes nodes
            smooth_nodes = list(input_layer.nodes())
            assert len(smooth_nodes) == n_leaf_nodes

            # linking it
            for i, prod_node in enumerate(product_nodes):
                for j in range(n_features):
                    # getting the next n_features nodes
                    prod_node.add_child(smooth_nodes[i * n_features + j])
            # setting the used levels
            layers = [product_layer, root_layer]

        # create the spn from levels
        kern_spn = SpnLinked(input_layer, layers)
        return kern_spn
예제 #12
0
def test_spn_backprop():
    # create initial layer
    node1 = Node()
    node2 = Node()
    node3 = Node()
    node4 = Node()
    node5 = Node()

    input_layer = CategoricalInputLayer([node1, node2,
                                         node3, node4,
                                         node5])

    # top layer made by 3 sum nodes
    sum1 = SumNode()
    sum2 = SumNode()
    sum3 = SumNode()

    # linking to input nodes
    weight11 = 0.3
    sum1.add_child(node1, weight11)
    weight12 = 0.3
    sum1.add_child(node2, weight12)
    weight13 = 0.4
    sum1.add_child(node3, weight13)

    weight22 = 0.15
    sum2.add_child(node2, weight22)
    weight23 = 0.15
    sum2.add_child(node3, weight23)
    weight24 = 0.7
    sum2.add_child(node4, weight24)

    weight33 = 0.4
    sum3.add_child(node3, weight33)
    weight34 = 0.25
    sum3.add_child(node4, weight34)
    weight35 = 0.35
    sum3.add_child(node5, weight35)

    sum_layer = SumLayer([sum1, sum2, sum3])

    # another layer with two product nodes
    prod1 = ProductNode()
    prod2 = ProductNode()

    prod1.add_child(sum1)
    prod1.add_child(sum2)
    prod2.add_child(sum2)
    prod2.add_child(sum3)

    prod_layer = ProductLayer([prod1, prod2])

    # root layer, double sum
    root1 = SumNode()
    root2 = SumNode()

    weightr11 = 0.5
    root1.add_child(prod1, weightr11)
    weightr12 = 0.5
    root1.add_child(prod2, weightr12)

    weightr21 = 0.9
    root2.add_child(prod1, weightr21)
    weightr22 = 0.1
    root2.add_child(prod2, weightr22)

    root_layer = SumLayer([root1, root2])
    # root_layer = SumLayer([root1])

    # create the spn
    spn = Spn(input_layer=input_layer,
              layers=[sum_layer, prod_layer, root_layer])

    # setting the input values
    val1 = 0.0
    node1.set_val(val1)
    val2 = 0.5
    node2.set_val(val2)
    val3 = 0.3
    node3.set_val(val3)
    val4 = 1.0
    node4.set_val(val4)
    val5 = 0.0
    node5.set_val(val5)

    # evaluating the spn
    res = spn.test_eval()
    print('spn eval\'d', res)

    # backprop
    spn.backprop()

    # computing derivatives by hand
    # topdown: root layer
    root_der = 1.0
    log_root_der = log(root_der)

    # print('root ders', root1.log_der, root2.log_der)
    print('root ders', root1.log_der)
    assert_almost_equal(log_root_der, root1.log_der)
    assert_almost_equal(log_root_der, root2.log_der)

    # product layer
    prod_der1 = (root_der * weightr11 +
                 root_der * weightr21)

    prod_der2 = (root_der * weightr12 +
                 root_der * weightr22)

    # prod_der1 = (root_der * weightr11)
    # prod_der2 = (root_der * weightr12)

    log_prod_der1 = log(prod_der1) if prod_der1 > 0.0 else LOG_ZERO
    log_prod_der2 = log(prod_der2) if prod_der2 > 0.0 else LOG_ZERO

    print('found  prod ders', prod1.log_der, prod2.log_der)
    print('expect prod ders', log_prod_der1, log_prod_der2)

    if IS_LOG_ZERO(log_prod_der1):
        assert IS_LOG_ZERO(prod1.log_der)
    else:
        assert_almost_equal(log_prod_der1, prod1.log_der)
    if IS_LOG_ZERO(log_prod_der2):
        assert IS_LOG_ZERO(prod2.log_der)
    else:
        assert_almost_equal(log_prod_der2, prod2.log_der)

    # sum layer
    sum_der1 = (
        prod_der1 * (weight22 * val2 +
                     weight23 * val3 +
                     weight24 * val4))

    log_sum_der1 = log(sum_der1) if sum_der1 > 0.0 else LOG_ZERO

    sum_der2 = (prod_der1 * (weight11 * val1 +
                             weight12 * val2 +
                             weight13 * val3) +
                prod_der2 * (weight33 * val3 +
                             weight34 * val4 +
                             weight35 * val5))

    log_sum_der2 = log(sum_der2) if sum_der2 > 0.0 else LOG_ZERO

    sum_der3 = (prod_der2 * (weight22 * val2 +
                             weight23 * val3 +
                             weight24 * val4))

    log_sum_der3 = log(sum_der3) if sum_der3 > 0.0 else LOG_ZERO

    print('expected sum ders', log_sum_der1,
          log_sum_der2,
          log_sum_der3)
    print('found    sum ders', sum1.log_der,
          sum2.log_der,
          sum3.log_der)

    if IS_LOG_ZERO(log_sum_der1):
        assert IS_LOG_ZERO(sum1.log_der)
    else:
        assert_almost_equal(log_sum_der1, sum1.log_der)
    if IS_LOG_ZERO(log_sum_der2):
        assert IS_LOG_ZERO(sum2.log_der)
    else:
        assert_almost_equal(log_sum_der2, sum2.log_der)
    if IS_LOG_ZERO(log_sum_der3):
        assert IS_LOG_ZERO(sum3.log_der)
    else:
        assert_almost_equal(log_sum_der3, sum3.log_der)

    # final level, the first one
    try:
        log_der1 = log(sum_der1 * weight11)
    except:
        log_der1 = LOG_ZERO

    try:
        log_der2 = log(sum_der1 * weight12 +
                       sum_der2 * weight22)
    except:
        log_der2 = LOG_ZERO

    try:
        log_der3 = log(sum_der1 * weight13 +
                       sum_der2 * weight23 +
                       sum_der3 * weight33)
    except:
        log_der3 = LOG_ZERO

    try:
        log_der4 = log(sum_der2 * weight24 +
                       sum_der3 * weight34)
    except:
        log_der4 = LOG_ZERO

    try:
        log_der5 = log(sum_der3 * weight35)
    except:
        log_der5 = LOG_ZERO

    # printing, just in case
    print('child log der', node1.log_der, node2.log_der,
          node3.log_der, node4.log_der, node5.log_der)
    print('exact log der', log_der1, log_der2, log_der3,
          log_der4, log_der5)

    if IS_LOG_ZERO(log_der1):
        assert IS_LOG_ZERO(node1.log_der)
    else:
        assert_almost_equal(log_der1, node1.log_der, 15)
    if IS_LOG_ZERO(log_der2):
        assert IS_LOG_ZERO(node2.log_der)
    else:
        assert_almost_equal(log_der2, node2.log_der, 15)
    if IS_LOG_ZERO(log_der3):
        assert IS_LOG_ZERO(node3.log_der)
    else:
        assert_almost_equal(log_der3, node3.log_der, 15)
    if IS_LOG_ZERO(log_der4):
        assert IS_LOG_ZERO(node4.log_der)
    else:
        assert_almost_equal(log_der4, node4.log_der, 15)
    if IS_LOG_ZERO(log_der5):
        assert IS_LOG_ZERO(node5.log_der)
    else:
        assert_almost_equal(log_der5, node5.log_der, 15)
예제 #13
0
def test_linked_to_theano_indicator():
    # creating single nodes
    root = SumNode()

    prod1 = ProductNode()
    prod2 = ProductNode()
    prod3 = ProductNode()

    sum1 = SumNode()
    sum2 = SumNode()
    sum3 = SumNode()
    sum4 = SumNode()

    ind1 = CategoricalIndicatorNode(var=0, var_val=0)
    ind2 = CategoricalIndicatorNode(var=0, var_val=1)
    ind3 = CategoricalIndicatorNode(var=1, var_val=0)
    ind4 = CategoricalIndicatorNode(var=1, var_val=1)
    ind5 = CategoricalIndicatorNode(var=2, var_val=0)
    ind6 = CategoricalIndicatorNode(var=2, var_val=1)
    ind7 = CategoricalIndicatorNode(var=2, var_val=2)
    ind8 = CategoricalIndicatorNode(var=3, var_val=0)
    ind9 = CategoricalIndicatorNode(var=3, var_val=1)
    ind10 = CategoricalIndicatorNode(var=3, var_val=2)
    ind11 = CategoricalIndicatorNode(var=3, var_val=3)

    prod4 = ProductNode()
    prod5 = ProductNode()
    prod6 = ProductNode()
    prod7 = ProductNode()

    # linking nodes
    root.add_child(prod1, 0.3)
    root.add_child(prod2, 0.3)
    root.add_child(prod3, 0.4)

    prod1.add_child(sum1)
    prod1.add_child(sum2)
    prod2.add_child(ind7)
    prod2.add_child(ind8)
    prod2.add_child(ind11)
    prod3.add_child(sum3)
    prod3.add_child(sum4)

    sum1.add_child(ind1, 0.3)
    sum1.add_child(ind2, 0.3)
    sum1.add_child(prod4, 0.4)

    sum2.add_child(ind2, 0.5)
    sum2.add_child(prod4, 0.2)
    sum2.add_child(prod5, 0.3)

    sum3.add_child(prod6, 0.5)
    sum3.add_child(prod7, 0.5)
    sum4.add_child(prod6, 0.5)
    sum4.add_child(prod7, 0.5)

    prod4.add_child(ind3)
    prod4.add_child(ind4)
    prod5.add_child(ind5)
    prod5.add_child(ind6)
    prod6.add_child(ind9)
    prod6.add_child(ind10)
    prod7.add_child(ind9)
    prod7.add_child(ind10)

    # building layers from nodes
    root_layer = SumLayerLinked([root])
    prod_layer = ProductLayerLinked([prod1, prod2, prod3])
    sum_layer = SumLayerLinked([sum1, sum2, sum3, sum4])
    aprod_layer = ProductLayerLinked([prod4, prod5, prod6, prod7])
    ind_layer = CategoricalIndicatorLayer(nodes=[
        ind1, ind2, ind3, ind4, ind5, ind6, ind7, ind8, ind9, ind10, ind11
    ])

    # creating the linked spn
    spn_linked = SpnLinked(
        input_layer=ind_layer,
        layers=[aprod_layer, sum_layer, prod_layer, root_layer])

    print(spn_linked)

    # converting to theano repr
    spn_theano = SpnFactory.linked_to_theano(spn_linked)
    print(spn_theano)

    # time for some inference comparison
    for instance in I:
        print('linked')
        res_l = spn_linked.eval(instance)
        print(res_l)
        print('theano')
        res_t = spn_theano.eval(instance)
        print(res_t)
        assert_array_almost_equal(res_l, res_t)
예제 #14
0
def test_linked_to_theano_categorical():
    vars = [2, 2, 3, 4]
    freqs = [{
        'var': 0,
        'freqs': [1, 2]
    }, {
        'var': 1,
        'freqs': [2, 2]
    }, {
        'var': 0,
        'freqs': [3, 2]
    }, {
        'var': 1,
        'freqs': [0, 3]
    }, {
        'var': 2,
        'freqs': [1, 0, 2]
    }, {
        'var': 3,
        'freqs': [1, 2, 1, 2]
    }, {
        'var': 3,
        'freqs': [3, 4, 0, 1]
    }]

    # create input layer first
    input_layer = CategoricalSmoothedLayer(vars=vars, node_dicts=freqs)
    # get nodes
    ind_nodes = [node for node in input_layer.nodes()]

    root_node = ProductNode()

    sum1 = SumNode()
    sum2 = SumNode()

    prod1 = ProductNode()
    prod2 = ProductNode()

    sum3 = SumNode()
    sum4 = SumNode()

    # linking
    root_node.add_child(sum1)
    root_node.add_child(sum2)
    root_node.add_child(ind_nodes[0])
    root_node.add_child(ind_nodes[1])

    sum1.add_child(ind_nodes[2], 0.4)
    sum1.add_child(ind_nodes[3], 0.6)
    sum2.add_child(ind_nodes[3], 0.2)
    sum2.add_child(prod1, 0.5)
    sum2.add_child(prod2, 0.3)

    prod1.add_child(ind_nodes[4])
    prod1.add_child(sum3)
    prod1.add_child(sum4)
    prod2.add_child(sum3)
    prod2.add_child(sum4)

    sum3.add_child(ind_nodes[5], 0.5)
    sum3.add_child(ind_nodes[6], 0.5)
    sum4.add_child(ind_nodes[5], 0.4)
    sum4.add_child(ind_nodes[6], 0.6)

    # creating layers
    root_layer = ProductLayerLinked([root_node])
    sum_layer = SumLayerLinked([sum1, sum2])
    prod_layer = ProductLayerLinked([prod1, prod2])
    sum_layer2 = SumLayerLinked([sum3, sum4])

    # create the linked spn
    spn_linked = SpnLinked(
        input_layer=input_layer,
        layers=[sum_layer2, prod_layer, sum_layer, root_layer])

    print(spn_linked)

    # converting to theano repr
    spn_theano = SpnFactory.linked_to_theano(spn_linked)
    print(spn_theano)

    # time for some inference comparison
    for instance in I:
        print('linked')
        res_l = spn_linked.eval(instance)
        print(res_l)
        print('theano')
        res_t = spn_theano.eval(instance)
        print(res_t)
        assert_array_almost_equal(res_l, res_t)
예제 #15
0
def test_layered_linked_spn():
    # creating single nodes
    # this code is replicated TODO: make a function
    root = SumNode()

    prod1 = ProductNode()
    prod2 = ProductNode()
    prod3 = ProductNode()

    sum1 = SumNode()
    sum2 = SumNode()
    sum3 = SumNode()
    sum4 = SumNode()

    ind1 = CategoricalIndicatorNode(var=0, var_val=0)
    ind2 = CategoricalIndicatorNode(var=0, var_val=1)
    ind3 = CategoricalIndicatorNode(var=1, var_val=0)
    ind4 = CategoricalIndicatorNode(var=1, var_val=1)
    ind5 = CategoricalIndicatorNode(var=2, var_val=0)
    ind6 = CategoricalIndicatorNode(var=2, var_val=1)
    ind7 = CategoricalIndicatorNode(var=2, var_val=2)
    ind8 = CategoricalIndicatorNode(var=3, var_val=0)
    ind9 = CategoricalIndicatorNode(var=3, var_val=1)
    ind10 = CategoricalIndicatorNode(var=3, var_val=2)
    ind11 = CategoricalIndicatorNode(var=3, var_val=3)

    prod4 = ProductNode()
    prod5 = ProductNode()
    prod6 = ProductNode()
    prod7 = ProductNode()

    # linking nodes
    root.add_child(prod1, 0.3)
    root.add_child(prod2, 0.3)
    root.add_child(prod3, 0.4)

    prod1.add_child(sum1)
    prod1.add_child(sum2)
    prod2.add_child(ind7)
    prod2.add_child(ind8)
    prod2.add_child(ind11)
    prod3.add_child(sum3)
    prod3.add_child(sum4)

    sum1.add_child(ind1, 0.3)
    sum1.add_child(ind2, 0.3)
    sum1.add_child(prod4, 0.4)

    sum2.add_child(ind2, 0.5)
    sum2.add_child(prod4, 0.2)
    sum2.add_child(prod5, 0.3)

    sum3.add_child(prod6, 0.5)
    sum3.add_child(prod7, 0.5)
    sum4.add_child(prod6, 0.5)
    sum4.add_child(prod7, 0.5)

    prod4.add_child(ind3)
    prod4.add_child(ind4)
    prod5.add_child(ind5)
    prod5.add_child(ind6)
    prod6.add_child(ind9)
    prod6.add_child(ind10)
    prod7.add_child(ind9)
    prod7.add_child(ind10)

    spn = SpnFactory.layered_linked_spn(root)

    print(spn)
    print(spn.stats())
예제 #16
0
def test_mini_spn_fit_em():
    vars = numpy.array([2, 2, 2, 2])
    input_layer = CategoricalIndicatorLayer(vars=vars)

    print(input_layer)
    ind1 = input_layer._nodes[0]
    ind2 = input_layer._nodes[1]
    ind3 = input_layer._nodes[2]
    ind4 = input_layer._nodes[3]
    ind5 = input_layer._nodes[4]
    ind6 = input_layer._nodes[5]
    ind7 = input_layer._nodes[6]
    ind8 = input_layer._nodes[7]

    # creating a sum layer of 4 nodes
    sum1 = SumNode()
    sum2 = SumNode()
    sum3 = SumNode()
    sum4 = SumNode()

    sum1.add_child(ind1, 0.6)
    sum1.add_child(ind2, 0.4)
    sum2.add_child(ind3, 0.5)
    sum2.add_child(ind4, 0.5)
    sum3.add_child(ind5, 0.7)
    sum3.add_child(ind6, 0.3)
    sum4.add_child(ind7, 0.4)
    sum4.add_child(ind8, 0.6)

    sum_layer = SumLayer(nodes=[sum1, sum2, sum3, sum4])

    # and a top layer of 3 products
    prod1 = ProductNode()
    prod2 = ProductNode()
    prod3 = ProductNode()

    prod1.add_child(sum1)
    prod1.add_child(sum2)
    prod2.add_child(sum2)
    prod2.add_child(sum3)
    prod3.add_child(sum3)
    prod3.add_child(sum4)

    prod_layer = ProductLayer(nodes=[prod1, prod2, prod3])

    # root layer
    root = SumNode()

    root.add_child(prod1, 0.4)
    root.add_child(prod2, 0.25)
    root.add_child(prod3, 0.35)

    root_layer = SumLayer(nodes=[root])

    spn = Spn(input_layer=input_layer,
              layers=[sum_layer, prod_layer, root_layer])

    print(spn)

    # training on obs
    spn.fit_em(train=syn_train_data, valid=syn_val_data, test=None, hard=True)
예제 #17
0
def test_sum_layer_backprop():
        # input layer made of 5 generic nodes
    node1 = Node()
    node2 = Node()
    node3 = Node()
    node4 = Node()
    node5 = Node()

    # top layer made by 3 sum nodes
    sum1 = SumNode()
    sum2 = SumNode()
    sum3 = SumNode()

    # linking to input nodes
    weight11 = 0.3
    sum1.add_child(node1, weight11)
    weight12 = 0.3
    sum1.add_child(node2, weight12)
    weight13 = 0.4
    sum1.add_child(node3, weight13)

    weight22 = 0.15
    sum2.add_child(node2, weight22)
    weight23 = 0.15
    sum2.add_child(node3, weight23)
    weight24 = 0.7
    sum2.add_child(node4, weight24)

    weight33 = 0.4
    sum3.add_child(node3, weight33)
    weight34 = 0.25
    sum3.add_child(node4, weight34)
    weight35 = 0.35
    sum3.add_child(node5, weight35)

    sum_layer = SumLayer([sum1, sum2, sum3])

    # setting input values
    val1 = 0.0
    node1.set_val(val1)
    val2 = 0.5
    node2.set_val(val2)
    val3 = 0.3
    node3.set_val(val3)
    val4 = 1.0
    node4.set_val(val4)
    val5 = 0.0
    node5.set_val(val5)

    # evaluating
    sum_layer.eval()
    print('eval\'d layer:', sum_layer.node_values())

    # set the parent derivatives
    sum_der1 = 1.0
    sum1.log_der = log(sum_der1)

    sum_der2 = 1.0
    sum2.log_der = log(sum_der2)

    sum_der3 = 0.0
    sum3.log_der = LOG_ZERO

    # back prop layer wise
    sum_layer.backprop()

    # check for correctness
    try:
        log_der1 = log(sum_der1 * weight11)
    except:
        log_der1 = LOG_ZERO

    try:
        log_der2 = log(sum_der1 * weight12 +
                       sum_der2 * weight22)
    except:
        log_der2 = LOG_ZERO

    try:
        log_der3 = log(sum_der1 * weight13 +
                       sum_der2 * weight23 +
                       sum_der3 * weight33)
    except:
        log_der3 = LOG_ZERO

    try:
        log_der4 = log(sum_der2 * weight24 +
                       sum_der3 * weight34)
    except:
        log_der4 = LOG_ZERO

    try:
        log_der5 = log(sum_der3 * weight35)
    except:
        log_der5 = LOG_ZERO

    # printing, just in case
    print('child log der', node1.log_der, node2.log_der,
          node3.log_der, node4.log_der, node5.log_der)
    print('exact log der', log_der1, log_der2, log_der3,
          log_der4, log_der5)

    if IS_LOG_ZERO(log_der1):
        assert IS_LOG_ZERO(node1.log_der)
    else:
        assert_almost_equal(log_der1, node1.log_der, 15)
    if IS_LOG_ZERO(log_der2):
        assert IS_LOG_ZERO(node2.log_der)
    else:
        assert_almost_equal(log_der2, node2.log_der, 15)
    if IS_LOG_ZERO(log_der3):
        assert IS_LOG_ZERO(node3.log_der)
    else:
        assert_almost_equal(log_der3, node3.log_der, 15)
    if IS_LOG_ZERO(log_der4):
        assert IS_LOG_ZERO(node4.log_der)
    else:
        assert_almost_equal(log_der4, node4.log_der, 15)
    if IS_LOG_ZERO(log_der5):
        assert IS_LOG_ZERO(node5.log_der)
    else:
        assert_almost_equal(log_der5, node5.log_der, 15)

    # updating weights
    eta = 0.1
    sum_layer.update_weights(Spn.test_weight_update, 0)
    # checking for correctness
    weight_u11 = sum_der1 * val1 * eta + weight11
    weight_u12 = sum_der1 * val2 * eta + weight12
    weight_u13 = sum_der1 * val3 * eta + weight13

    weight_u22 = sum_der2 * val2 * eta + weight22
    weight_u23 = sum_der2 * val3 * eta + weight23
    weight_u24 = sum_der2 * val4 * eta + weight24

    weight_u33 = sum_der3 * val3 * eta + weight33
    weight_u34 = sum_der3 * val4 * eta + weight34
    weight_u35 = sum_der3 * val5 * eta + weight35

    # normalizing
    weight_sum1 = weight_u11 + weight_u12 + weight_u13
    weight_sum2 = weight_u22 + weight_u23 + weight_u24
    weight_sum3 = weight_u33 + weight_u34 + weight_u35

    weight_u11 = weight_u11 / weight_sum1
    weight_u12 = weight_u12 / weight_sum1
    weight_u13 = weight_u13 / weight_sum1

    weight_u22 = weight_u22 / weight_sum2
    weight_u23 = weight_u23 / weight_sum2
    weight_u24 = weight_u24 / weight_sum2

    weight_u33 = weight_u33 / weight_sum3
    weight_u34 = weight_u34 / weight_sum3
    weight_u35 = weight_u35 / weight_sum3

    print('expected weights', weight_u11, weight_u12, weight_u13,
          weight_u22, weight_u23, weight_u24,
          weight_u33, weight_u34, weight_u35)
    print('found weights', sum1.weights[0], sum1.weights[1], sum1.weights[2],
          sum2.weights[0], sum2.weights[1], sum2.weights[2],
          sum3.weights[0], sum3.weights[1], sum3.weights[2])
    assert_almost_equal(weight_u11, sum1.weights[0], 10)
    assert_almost_equal(weight_u12, sum1.weights[1], 10)
    assert_almost_equal(weight_u13, sum1.weights[2], 10)

    assert_almost_equal(weight_u22, sum2.weights[0], 10)
    assert_almost_equal(weight_u23, sum2.weights[1], 10)
    assert_almost_equal(weight_u24, sum2.weights[2], 10)

    assert_almost_equal(weight_u33, sum3.weights[0], 10)
    assert_almost_equal(weight_u34, sum3.weights[1], 10)
    assert_almost_equal(weight_u35, sum3.weights[2], 10)

    #
    # resetting derivatives
    #
    node1.log_der = LOG_ZERO
    node2.log_der = LOG_ZERO
    node3.log_der = LOG_ZERO
    node4.log_der = LOG_ZERO
    node5.log_der = LOG_ZERO

    # setting new values as inputs
    val1 = 0.0
    node1.set_val(val1)
    val2 = 0.0
    node2.set_val(val2)
    val3 = 0.3
    node3.set_val(val3)
    val4 = 1.0
    node4.set_val(val4)
    val5 = 1.0
    node5.set_val(val5)

    # evaluating again
    sum_layer.eval()
    print('eval\'d layer:', sum_layer.node_values())

    # set the parent derivatives
    sum_der1 = 1.0
    sum1.log_der = log(sum_der1)

    sum_der2 = 1.0
    sum2.log_der = log(sum_der2)

    sum_der3 = 0.0
    sum3.log_der = LOG_ZERO

    # back prop layer wise
    sum_layer.backprop()

    # check for correctness
    try:
        log_der1 = log(sum_der1 * weight_u11)
    except:
        log_der1 = LOG_ZERO

    try:
        log_der2 = log(sum_der1 * weight_u12 +
                       sum_der2 * weight_u22)
    except:
        log_der2 = LOG_ZERO

    try:
        log_der3 = log(sum_der1 * weight_u13 +
                       sum_der2 * weight_u23 +
                       sum_der3 * weight_u33)
    except:
        log_der3 = LOG_ZERO

    try:
        log_der4 = log(sum_der2 * weight_u24 +
                       sum_der3 * weight_u34)
    except:
        log_der4 = LOG_ZERO

    try:
        log_der5 = log(sum_der3 * weight_u35)
    except:
        log_der5 = LOG_ZERO

    # printing, just in case
    print('child log der', node1.log_der, node2.log_der,
          node3.log_der, node4.log_der, node5.log_der)
    print('exact log der', log_der1, log_der2, log_der3,
          log_der4, log_der5)

    if IS_LOG_ZERO(log_der1):
        assert IS_LOG_ZERO(node1.log_der)
    else:
        assert_almost_equal(log_der1, node1.log_der, 15)
    if IS_LOG_ZERO(log_der2):
        assert IS_LOG_ZERO(node2.log_der)
    else:
        assert_almost_equal(log_der2, node2.log_der, 15)
    if IS_LOG_ZERO(log_der3):
        assert IS_LOG_ZERO(node3.log_der)
    else:
        assert_almost_equal(log_der3, node3.log_der, 15)
    if IS_LOG_ZERO(log_der4):
        assert IS_LOG_ZERO(node4.log_der)
    else:
        assert_almost_equal(log_der4, node4.log_der, 15)
    if IS_LOG_ZERO(log_der5):
        assert IS_LOG_ZERO(node5.log_der)
    else:
        assert_almost_equal(log_der5, node5.log_der, 15)
예제 #18
0
def linked_categorical_input_to_indicators(spn, input_layer=None):
    """
    Convertes a linked spn categorical input layer into an indicator one
    """

    #
    # get child, parent relations for node relinking
    child_assoc = retrieve_children_parent_assoc(spn)

    #
    # get input layer
    cat_input_layer = spn.input_layer()
    assert isinstance(cat_input_layer, CategoricalSmoothedLayerLinked)

    #
    # one indicator node for each var value
    vars = cat_input_layer.vars()
    if not vars:
        vars = list(sorted({node.var for node in cat_input_layer.nodes()}))

    feature_values = cat_input_layer.feature_vals()
    # print('vars', vars)
    # print('feature values', feature_values)

    indicator_nodes = [
        CategoricalIndicatorNode(var, val) for i, var in enumerate(vars)
        for val in range(feature_values[i])
    ]
    # for node in indicator_nodes:
    #     print(node)

    indicator_map = defaultdict(set)
    for ind_node in indicator_nodes:
        indicator_map[ind_node.var].add(ind_node)

    sum_nodes = []
    #
    # as many sum nodes as cat nodes
    for node in cat_input_layer.nodes():

        sum_node = SumNode(var_scope=frozenset([node.var]))
        sum_nodes.append(sum_node)

        for ind_node in sorted(indicator_map[node.var],
                               key=lambda x: x.var_val):
            sum_node.add_child(ind_node,
                               numpy.exp(node._var_probs[ind_node.var_val]))

        #
        # removing links to parents
        parents = child_assoc[node]
        for p_node in parents:
            #
            # assume it to be a product node
            # TODO: generalize
            assert isinstance(p_node, ProductNode)
            p_node.children.remove(node)
            p_node.add_child(sum_node)

    #
    # creating layer
    sum_layer = SumLayerLinked(sum_nodes)

    indicator_layer = CategoricalIndicatorLayerLinked(indicator_nodes)

    cat_input_layer.disconnect_layer()
    spn.set_input_layer(indicator_layer)
    spn.insert_layer(sum_layer, 0)

    return spn
예제 #19
0
def test_spn_set_get_weights():
    # create a simple spn
    root_node = SumNode()
    root_layer = SumLayer([root_node])

    prod_node_1 = ProductNode()
    prod_node_2 = ProductNode()
    root_node.add_child(prod_node_1, 0.5)
    root_node.add_child(prod_node_2, 0.5)
    prod_layer = ProductLayer([prod_node_1,
                               prod_node_2])

    sum_node_1 = SumNode()
    sum_node_2 = SumNode()
    sum_node_3 = SumNode()
    prod_node_1.add_child(sum_node_1)
    prod_node_1.add_child(sum_node_2)
    prod_node_2.add_child(sum_node_2)
    prod_node_2.add_child(sum_node_3)
    sum_layer = SumLayer([sum_node_1, sum_node_2,
                          sum_node_3])

    ind_node_1 = CategoricalIndicatorNode(var=0, var_val=1)
    ind_node_2 = CategoricalIndicatorNode(var=0, var_val=1)
    ind_node_3 = CategoricalIndicatorNode(var=0, var_val=1)
    ind_node_4 = CategoricalIndicatorNode(var=0, var_val=1)
    ind_node_5 = CategoricalIndicatorNode(var=0, var_val=1)
    input_layer = CategoricalInputLayer(nodes=[ind_node_1,
                                               ind_node_2,
                                               ind_node_3,
                                               ind_node_4,
                                               ind_node_5])
    sum_node_1.add_child(ind_node_1, 0.2)
    sum_node_1.add_child(ind_node_2, 0.2)
    sum_node_2.add_child(ind_node_2, 0.2)
    sum_node_2.add_child(ind_node_3, 0.2)
    sum_node_2.add_child(ind_node_4, 0.2)
    sum_node_3.add_child(ind_node_4, 0.2)
    sum_node_3.add_child(ind_node_5, 0.2)

    spn = Spn(input_layer=input_layer,
              layers=[sum_layer, prod_layer, root_layer])

    print(spn)

    # storing these weights
    curr_weights = spn.get_weights()

    # setting the new weights
    spn.set_weights(weights_ds)

    # getting them again
    new_weights = spn.get_weights()

    # comparing them
    assert new_weights == weights_ds

    # now setting back the previous one
    spn.set_weights(curr_weights)

    # getting them back again
    old_weights = spn.get_weights()

    # and checking
    assert old_weights == curr_weights
예제 #20
0
def test_linked_to_theano_categorical():
    vars = [2, 2, 3, 4]
    freqs = [{'var': 0, 'freqs': [1, 2]},
             {'var': 1, 'freqs': [2, 2]},
             {'var': 0, 'freqs': [3, 2]},
             {'var': 1, 'freqs': [0, 3]},
             {'var': 2, 'freqs': [1, 0, 2]},
             {'var': 3, 'freqs': [1, 2, 1, 2]},
             {'var': 3, 'freqs': [3, 4, 0, 1]}]

    # create input layer first
    input_layer = CategoricalSmoothedLayer(vars=vars,
                                           node_dicts=freqs)
    # get nodes
    ind_nodes = [node for node in input_layer.nodes()]

    root_node = ProductNode()

    sum1 = SumNode()
    sum2 = SumNode()

    prod1 = ProductNode()
    prod2 = ProductNode()

    sum3 = SumNode()
    sum4 = SumNode()

    # linking
    root_node.add_child(sum1)
    root_node.add_child(sum2)
    root_node.add_child(ind_nodes[0])
    root_node.add_child(ind_nodes[1])

    sum1.add_child(ind_nodes[2], 0.4)
    sum1.add_child(ind_nodes[3], 0.6)
    sum2.add_child(ind_nodes[3], 0.2)
    sum2.add_child(prod1, 0.5)
    sum2.add_child(prod2, 0.3)

    prod1.add_child(ind_nodes[4])
    prod1.add_child(sum3)
    prod1.add_child(sum4)
    prod2.add_child(sum3)
    prod2.add_child(sum4)

    sum3.add_child(ind_nodes[5], 0.5)
    sum3.add_child(ind_nodes[6], 0.5)
    sum4.add_child(ind_nodes[5], 0.4)
    sum4.add_child(ind_nodes[6], 0.6)

    # creating layers
    root_layer = ProductLayerLinked([root_node])
    sum_layer = SumLayerLinked([sum1, sum2])
    prod_layer = ProductLayerLinked([prod1, prod2])
    sum_layer2 = SumLayerLinked([sum3, sum4])

    # create the linked spn
    spn_linked = SpnLinked(input_layer=input_layer,
                           layers=[sum_layer2, prod_layer,
                                   sum_layer, root_layer])

    print(spn_linked)

    # converting to theano repr
    spn_theano = SpnFactory.linked_to_theano(spn_linked)
    print(spn_theano)

    # time for some inference comparison
    for instance in I:
        print('linked')
        res_l = spn_linked.eval(instance)
        print(res_l)
        print('theano')
        res_t = spn_theano.eval(instance)
        print(res_t)
        assert_array_almost_equal(res_l, res_t)
예제 #21
0
def build_linked_layered_spn(print_spn=True):
    #
    # building an indicator layer
    ind_x_00 = CategoricalIndicatorNode(0, 0)
    ind_x_01 = CategoricalIndicatorNode(0, 1)
    ind_x_10 = CategoricalIndicatorNode(1, 0)
    ind_x_11 = CategoricalIndicatorNode(1, 1)
    ind_x_20 = CategoricalIndicatorNode(2, 0)
    ind_x_21 = CategoricalIndicatorNode(2, 1)

    input_layer = CategoricalIndicatorLayer(
        [ind_x_00, ind_x_01, ind_x_10, ind_x_11, ind_x_20, ind_x_21])

    #
    # sum layer
    #
    sum_node_1 = SumNode(frozenset([0]))
    sum_node_1.add_child(ind_x_00, 0.1)
    sum_node_1.add_child(ind_x_01, 0.9)

    sum_node_2 = SumNode(frozenset([0]))
    sum_node_2.add_child(ind_x_00, 0.4)
    sum_node_2.add_child(ind_x_01, 0.6)

    sum_node_3 = SumNode(frozenset([1]))
    sum_node_3.add_child(ind_x_10, 0.3)
    sum_node_3.add_child(ind_x_11, 0.7)

    sum_node_4 = SumNode(frozenset([1]))
    sum_node_4.add_child(ind_x_10, 0.6)
    sum_node_4.add_child(ind_x_11, 0.4)

    sum_node_5 = SumNode(frozenset([2]))
    sum_node_5.add_child(ind_x_20, 0.5)
    sum_node_5.add_child(ind_x_21, 0.5)

    sum_node_6 = SumNode(frozenset([2]))
    sum_node_6.add_child(ind_x_20, 0.2)
    sum_node_6.add_child(ind_x_21, 0.8)

    sum_layer_1 = SumLayerLinked([
        sum_node_1, sum_node_2, sum_node_3, sum_node_4, sum_node_5, sum_node_6
    ])

    #
    # product nodes

    #
    # xy
    prod_node_7 = ProductNode(frozenset([0, 1]))
    prod_node_7.add_child(sum_node_1)
    prod_node_7.add_child(sum_node_3)

    prod_node_8 = ProductNode(frozenset([0, 1]))
    prod_node_8.add_child(sum_node_2)
    prod_node_8.add_child(sum_node_4)

    prod_node_9 = ProductNode(frozenset([0, 1]))
    prod_node_9.add_child(sum_node_1)
    prod_node_9.add_child(sum_node_3)

    #
    # yz
    prod_node_10 = ProductNode(frozenset([1, 2]))
    prod_node_10.add_child(sum_node_4)
    prod_node_10.add_child(sum_node_5)

    prod_node_11 = ProductNode(frozenset([1, 2]))
    prod_node_11.add_child(sum_node_4)
    prod_node_11.add_child(sum_node_6)

    prod_layer_2 = ProductLayerLinked(
        [prod_node_7, prod_node_8, prod_node_9, prod_node_10, prod_node_11])

    #
    # sum nodes
    #
    # xy
    sum_node_12 = SumNode(frozenset([0, 1]))
    sum_node_12.add_child(prod_node_7, 0.1)
    sum_node_12.add_child(prod_node_8, 0.9)

    sum_node_13 = SumNode(frozenset([0, 1]))
    sum_node_13.add_child(prod_node_8, 0.7)
    sum_node_13.add_child(prod_node_9, 0.3)

    #
    # yz
    sum_node_14 = SumNode(frozenset([1, 2]))
    sum_node_14.add_child(prod_node_10, 0.6)
    sum_node_14.add_child(prod_node_11, 0.4)

    sum_layer_3 = SumLayerLinked([sum_node_12, sum_node_13, sum_node_14])

    #
    # product nodes
    prod_node_15 = ProductNode(frozenset([0, 1, 2]))
    prod_node_15.add_child(sum_node_12)
    prod_node_15.add_child(sum_node_6)

    prod_node_16 = ProductNode(frozenset([0, 1, 2]))
    prod_node_16.add_child(sum_node_13)
    prod_node_16.add_child(sum_node_5)

    prod_node_17 = ProductNode(frozenset([0, 1, 2]))
    prod_node_17.add_child(sum_node_2)
    prod_node_17.add_child(sum_node_14)

    prod_layer_4 = ProductLayerLinked(
        [prod_node_15, prod_node_16, prod_node_17])

    #
    # root
    sum_node_18 = SumNode(frozenset([0, 1, 2]))
    sum_node_18.add_child(prod_node_15, 0.2)
    sum_node_18.add_child(prod_node_16, 0.2)
    sum_node_18.add_child(prod_node_17, 0.6)

    sum_layer_5 = SumLayerLinked([sum_node_18])

    #
    # creating the spn
    layers = [
        sum_layer_1, prod_layer_2, sum_layer_3, prod_layer_4, sum_layer_5
    ]
    nodes = [node for layer in layers for node in layer.nodes()]

    spn = SpnLinked(input_layer=input_layer, layers=layers)

    if print_spn:
        print(spn)

    return spn, layers, nodes
예제 #22
0
def test_categorical_to_indicator_input_layer():
    #
    # creating all the data slices
    # the slicing is a fake stub
    # rows = 5
    # cols = 5
    var_1 = 0
    values_1 = 2
    var_2 = 1
    values_2 = 3
    var_3 = 2
    values_3 = 4

    node_1 = SumNode()
    node_1.id = 1

    node_2 = ProductNode()
    node_2.id = 2

    node_3 = SumNode()
    node_3.id = 3

    # adding first level
    weight_12 = 0.4
    weight_13 = 0.6
    node_1.add_child(node_2, weight_12)
    node_1.add_child(node_3, weight_13)

    node_4 = ProductNode()
    node_4.id = 4

    leaf_5 = CategoricalSmoothedNode(var_1, values_1)
    leaf_5.id = 5

    # not adding the slice to the stack

    node_2.add_child(node_4)
    node_2.add_child(leaf_5)

    node_6 = SumNode()
    node_6.id = 6

    node_7 = SumNode()
    node_7.id = 7

    weight_36 = 0.1
    weight_37 = 0.9
    node_3.add_child(node_6, weight_36)
    node_3.add_child(node_7, weight_37)

    node_8 = ProductNode()
    node_8.id = 8

    leaf_15 = CategoricalSmoothedNode(var_2, values_2)
    leaf_15.id = 15

    node_4.add_child(node_8)
    node_4.add_child(leaf_15)

    leaf_13 = CategoricalSmoothedNode(var_3, values_3)
    leaf_13.id = 13

    leaf_14 = CategoricalSmoothedNode(var_1, values_1)
    leaf_14.id = 14

    node_8.add_child(leaf_13)
    node_8.add_child(leaf_14)

    node_9 = ProductNode()
    node_9.id = 9

    leaf_16 = CategoricalSmoothedNode(var_2, values_2)
    leaf_16.id = 16

    leaf_17 = CategoricalSmoothedNode(var_3, values_3)
    leaf_17.id = 17

    node_9.add_child(leaf_16)
    node_9.add_child(leaf_17)

    node_10 = ProductNode()
    node_10.id = 10

    leaf_18 = CategoricalSmoothedNode(var_2, values_2)
    leaf_18.id = 18

    leaf_19 = CategoricalSmoothedNode(var_2, values_2)
    leaf_19.id = 19

    node_10.add_child(leaf_18)
    node_10.add_child(leaf_19)

    weight_69 = 0.3
    weight_610 = 0.7
    node_6.add_child(node_9, weight_69)
    node_6.add_child(node_10, weight_610)

    node_11 = ProductNode()
    node_11.id = 11

    leaf_20 = CategoricalSmoothedNode(var_1, values_1)
    leaf_20.id = 20

    leaf_21 = CategoricalSmoothedNode(var_3, values_3)
    leaf_21.id = 21

    node_11.add_child(leaf_20)
    node_11.add_child(leaf_21)

    node_12 = ProductNode()
    node_12.id = 12

    leaf_22 = CategoricalSmoothedNode(var_1, values_1)
    leaf_22.id = 22

    leaf_23 = CategoricalSmoothedNode(var_3, values_3)
    leaf_23.id = 23

    node_12.add_child(leaf_22)
    node_12.add_child(leaf_23)

    weight_711 = 0.5
    weight_712 = 0.5
    node_7.add_child(node_11, weight_711)
    node_7.add_child(node_12, weight_712)

    root_node = SpnFactory.layered_pruned_linked_spn(node_1)

    print('ROOT nODE', root_node)

    spn = SpnFactory.layered_linked_spn(root_node)

    print('SPN', spn)

    assert spn.n_layers() == 3

    for i, layer in enumerate(spn.top_down_layers()):
        if i == 0:
            assert layer.n_nodes() == 1
        elif i == 1:
            assert layer.n_nodes() == 5
        elif i == 2:
            assert layer.n_nodes() == 12

    #
    # changing input layer
    spn = linked_categorical_input_to_indicators(spn)

    print('Changed input layer to indicator variables')
    print(spn)
예제 #23
0
def test_layered_pruned_linked_spn_cltree():
    #
    # creating all the data slices
    # the slicing is a fake stub
    rows = 5
    cols = 5
    var = 1
    values = 2

    vars = [2, 3]
    var_values = [2, 2]
    s_data = numpy.array([[0, 1], [1, 1], [1, 0], [0, 0]])

    node_1 = SumNode()
    node_1.id = 1

    node_2 = ProductNode()
    node_2.id = 2

    node_3 = SumNode()
    node_3.id = 3

    # adding first level
    weight_12 = 0.4
    weight_13 = 0.6
    node_1.add_child(node_2, weight_12)
    node_1.add_child(node_3, weight_13)

    node_4 = ProductNode()
    node_4.id = 4

    leaf_5 = CategoricalSmoothedNode(var, values)
    leaf_5.id = 5

    # not adding the slice to the stack

    node_2.add_child(node_4)
    node_2.add_child(leaf_5)

    node_6 = SumNode()
    node_6.id = 6

    node_7 = SumNode()
    node_7.id = 7

    weight_36 = 0.1
    weight_37 = 0.9
    node_3.add_child(node_6, weight_36)
    node_3.add_child(node_7, weight_37)

    node_8 = ProductNode()
    node_8.id = 8

    #
    # this is a cltree
    leaf_15 = CLTreeNode(vars=vars, var_values=var_values, data=s_data)
    leaf_15.id = 15

    node_4.add_child(node_8)
    node_4.add_child(leaf_15)

    leaf_13 = CategoricalSmoothedNode(var, values)
    leaf_13.id = 13

    leaf_14 = CLTreeNode(vars=vars, var_values=var_values, data=s_data)
    leaf_14.id = 14

    node_8.add_child(leaf_13)
    node_8.add_child(leaf_14)

    leaf_9 = CLTreeNode(vars=vars, var_values=var_values, data=s_data)
    leaf_9.id = 9

    node_10 = ProductNode()
    node_10.id = 10

    leaf_18 = CategoricalSmoothedNode(var, values)
    leaf_18.id = 18

    leaf_19 = CategoricalSmoothedNode(var, values)
    leaf_19.id = 19

    node_10.add_child(leaf_18)
    node_10.add_child(leaf_19)

    weight_69 = 0.3
    weight_610 = 0.7
    node_6.add_child(leaf_9, weight_69)
    node_6.add_child(node_10, weight_610)

    node_11 = ProductNode()
    node_11.id = 11

    leaf_20 = CategoricalSmoothedNode(var, values)
    leaf_20.id = 20

    leaf_21 = CategoricalSmoothedNode(var, values)
    leaf_21.id = 21

    node_11.add_child(leaf_20)
    node_11.add_child(leaf_21)

    node_12 = ProductNode()
    node_12.id = 12

    leaf_22 = CLTreeNode(vars=vars, var_values=var_values, data=s_data)
    leaf_22.id = 22

    leaf_23 = CategoricalSmoothedNode(var, values)
    leaf_23.id = 23

    node_12.add_child(leaf_22)
    node_12.add_child(leaf_23)

    weight_711 = 0.5
    weight_712 = 0.5
    node_7.add_child(node_11, weight_711)
    node_7.add_child(node_12, weight_712)

    print('Added nodes')

    root_node = SpnFactory.layered_pruned_linked_spn(node_1)

    print('ROOT nODE', root_node)

    spn = SpnFactory.layered_linked_spn(root_node)

    print('SPN', spn)

    assert spn.n_layers() == 3

    for i, layer in enumerate(spn.top_down_layers()):
        if i == 0:
            assert layer.n_nodes() == 1
        elif i == 1:
            assert layer.n_nodes() == 4
        elif i == 2:
            assert layer.n_nodes() == 10
예제 #24
0
def test_sum_layer_create_and_eval():
    # creating generic nodes
    node1 = Node()
    node2 = Node()
    node3 = Node()

    # whose values are
    val1 = 1.
    val2 = 1.
    val3 = 0.
    node1.set_val(val1)
    node2.set_val(val2)
    node3.set_val(val3)

    # setting weights
    weight11 = 0.2
    weight12 = 0.3
    weight13 = 0.5

    weight21 = 0.3
    weight22 = 0.7

    weight32 = 0.4
    weight33 = 0.6

    # creating sum nodes
    sum1 = SumNode()
    sum2 = SumNode()
    sum3 = SumNode()

    # adding children
    sum1.add_child(node1, weight11)
    sum1.add_child(node2, weight12)
    sum1.add_child(node3, weight13)

    sum2.add_child(node1, weight21)
    sum2.add_child(node2, weight22)

    sum3.add_child(node2, weight32)
    sum3.add_child(node3, weight33)

    # adding to layer
    sum_layer = SumLayer([sum1, sum2, sum3])

    # evaluation
    sum_layer.eval()

    # computing 'log values by hand'
    layer_evals = sum_layer.node_values()
    print('Layer eval nodes')
    print(layer_evals)

    logval1 = log(weight11 * val1 +
                  weight12 * val2 +
                  weight13 * val3)
    logval2 = log(weight21 * val1 +
                  weight22 * val2)
    logval3 = log(weight32 * val2 +
                  weight33 * val3)
    logvals = [logval1, logval2, logval3]

    print('log vals')
    print(logvals)
    # checking for correctness
    for logval, eval in zip(logvals, layer_evals):
        assert_almost_equal(logval, eval, PRECISION)
예제 #25
0
def test_layered_linked_spn():
    # creating single nodes
    # this code is replicated TODO: make a function
    root = SumNode()

    prod1 = ProductNode()
    prod2 = ProductNode()
    prod3 = ProductNode()

    sum1 = SumNode()
    sum2 = SumNode()
    sum3 = SumNode()
    sum4 = SumNode()

    ind1 = CategoricalIndicatorNode(var=0, var_val=0)
    ind2 = CategoricalIndicatorNode(var=0, var_val=1)
    ind3 = CategoricalIndicatorNode(var=1, var_val=0)
    ind4 = CategoricalIndicatorNode(var=1, var_val=1)
    ind5 = CategoricalIndicatorNode(var=2, var_val=0)
    ind6 = CategoricalIndicatorNode(var=2, var_val=1)
    ind7 = CategoricalIndicatorNode(var=2, var_val=2)
    ind8 = CategoricalIndicatorNode(var=3, var_val=0)
    ind9 = CategoricalIndicatorNode(var=3, var_val=1)
    ind10 = CategoricalIndicatorNode(var=3, var_val=2)
    ind11 = CategoricalIndicatorNode(var=3, var_val=3)

    prod4 = ProductNode()
    prod5 = ProductNode()
    prod6 = ProductNode()
    prod7 = ProductNode()

    # linking nodes
    root.add_child(prod1, 0.3)
    root. add_child(prod2, 0.3)
    root.add_child(prod3, 0.4)

    prod1.add_child(sum1)
    prod1.add_child(sum2)
    prod2.add_child(ind7)
    prod2.add_child(ind8)
    prod2.add_child(ind11)
    prod3.add_child(sum3)
    prod3.add_child(sum4)

    sum1.add_child(ind1, 0.3)
    sum1.add_child(ind2, 0.3)
    sum1.add_child(prod4, 0.4)

    sum2.add_child(ind2, 0.5)
    sum2.add_child(prod4, 0.2)
    sum2.add_child(prod5, 0.3)

    sum3.add_child(prod6, 0.5)
    sum3.add_child(prod7, 0.5)
    sum4.add_child(prod6, 0.5)
    sum4.add_child(prod7, 0.5)

    prod4.add_child(ind3)
    prod4.add_child(ind4)
    prod5.add_child(ind5)
    prod5.add_child(ind6)
    prod6.add_child(ind9)
    prod6.add_child(ind10)
    prod7.add_child(ind9)
    prod7.add_child(ind10)

    spn = SpnFactory.layered_linked_spn(root)

    print(spn)
    print(spn.stats())
예제 #26
0
def test_layered_pruned_linked_spn_cltree():
    #
    # creating all the data slices
    # the slicing is a fake stub
    rows = 5
    cols = 5
    var = 1
    values = 2

    vars = [2, 3]
    var_values = [2, 2]
    s_data = numpy.array([[0, 1], [1, 1], [1, 0], [0, 0]])

    node_1 = SumNode()
    node_1.id = 1

    node_2 = ProductNode()
    node_2.id = 2

    node_3 = SumNode()
    node_3.id = 3

    # adding first level
    weight_12 = 0.4
    weight_13 = 0.6
    node_1.add_child(node_2, weight_12)
    node_1.add_child(node_3, weight_13)

    node_4 = ProductNode()
    node_4.id = 4

    leaf_5 = CategoricalSmoothedNode(var,
                                     values)
    leaf_5.id = 5

    # not adding the slice to the stack

    node_2.add_child(node_4)
    node_2.add_child(leaf_5)

    node_6 = SumNode()
    node_6.id = 6

    node_7 = SumNode()
    node_7.id = 7

    weight_36 = 0.1
    weight_37 = 0.9
    node_3.add_child(node_6, weight_36)
    node_3.add_child(node_7, weight_37)

    node_8 = ProductNode()
    node_8.id = 8

    #
    # this is a cltree
    leaf_15 = CLTreeNode(vars=vars,
                         var_values=var_values,
                         data=s_data)
    leaf_15.id = 15

    node_4.add_child(node_8)
    node_4.add_child(leaf_15)

    leaf_13 = CategoricalSmoothedNode(var,
                                      values)
    leaf_13.id = 13

    leaf_14 = CLTreeNode(vars=vars,
                         var_values=var_values,
                         data=s_data)
    leaf_14.id = 14

    node_8.add_child(leaf_13)
    node_8.add_child(leaf_14)

    leaf_9 = CLTreeNode(vars=vars,
                        var_values=var_values,
                        data=s_data)
    leaf_9.id = 9

    node_10 = ProductNode()
    node_10.id = 10

    leaf_18 = CategoricalSmoothedNode(var,
                                      values)
    leaf_18.id = 18

    leaf_19 = CategoricalSmoothedNode(var,
                                      values)
    leaf_19.id = 19

    node_10.add_child(leaf_18)
    node_10.add_child(leaf_19)

    weight_69 = 0.3
    weight_610 = 0.7
    node_6.add_child(leaf_9, weight_69)
    node_6.add_child(node_10, weight_610)

    node_11 = ProductNode()
    node_11.id = 11

    leaf_20 = CategoricalSmoothedNode(var,
                                      values)
    leaf_20.id = 20

    leaf_21 = CategoricalSmoothedNode(var,
                                      values)
    leaf_21.id = 21

    node_11.add_child(leaf_20)
    node_11.add_child(leaf_21)

    node_12 = ProductNode()
    node_12.id = 12

    leaf_22 = CLTreeNode(vars=vars,
                         var_values=var_values,
                         data=s_data)
    leaf_22.id = 22

    leaf_23 = CategoricalSmoothedNode(var,
                                      values)
    leaf_23.id = 23

    node_12.add_child(leaf_22)
    node_12.add_child(leaf_23)

    weight_711 = 0.5
    weight_712 = 0.5
    node_7.add_child(node_11, weight_711)
    node_7.add_child(node_12, weight_712)

    print('Added nodes')

    root_node = SpnFactory.layered_pruned_linked_spn(node_1)

    print('ROOT nODE', root_node)

    spn = SpnFactory.layered_linked_spn(root_node)

    print('SPN', spn)

    assert spn.n_layers() == 3

    for i, layer in enumerate(spn.top_down_layers()):
        if i == 0:
            assert layer.n_nodes() == 1
        elif i == 1:
            assert layer.n_nodes() == 4
        elif i == 2:
            assert layer.n_nodes() == 10
예제 #27
0
def test_sum_node_backprop():
    # create child nodes
    child1 = Node()
    val1 = 1.
    child1.set_val(val1)

    child2 = Node()
    val2 = 1.
    child2.set_val(val2)

    # create sum node and adding children to it
    sum_node1 = SumNode()
    weight11 = 0.8
    weight12 = 0.2
    sum_node1.add_child(child1, weight11)
    sum_node1.add_child(child2, weight12)

    # adding a coparent
    sum_node2 = SumNode()
    weight21 = 0.6
    weight22 = 0.4
    sum_node2.add_child(child1, weight21)
    sum_node2.add_child(child2, weight22)

    # evaluating
    sum_node1.eval()
    sum_node2.eval()

    # setting the log derivatives to the parents
    sum_node_der1 = 1.0
    sum_node1.log_der = log(sum_node_der1)
    sum_node1.backprop()

    sum_node_der2 = 1.0
    sum_node2.log_der = log(sum_node_der2)
    sum_node2.backprop()

    # checking for correctness
    log_der1 = log(weight11 * sum_node_der1 +
                   weight21 * sum_node_der2)

    log_der2 = log(weight12 * sum_node_der1 +
                   weight22 * sum_node_der2)

    print('log ders 1:{lgd1} 2:{lgd2}'.format(lgd1=log_der1,
                                              lgd2=log_der2))
    assert_almost_equal(log_der1, child1.log_der, 15)
    assert_almost_equal(log_der2, child2.log_der, 15)

    # resetting
    child1.log_der = LOG_ZERO
    child2.log_der = LOG_ZERO

    # now changing the initial der values
    sum_node_der1 = 0.5
    sum_node1.log_der = log(sum_node_der1)
    sum_node1.backprop()

    sum_node_der2 = 0.0
    sum_node2.log_der = LOG_ZERO
    sum_node2.backprop()

    # checking for correctness
    log_der1 = log(weight11 * sum_node_der1 +
                   weight21 * sum_node_der2)

    log_der2 = log(weight12 * sum_node_der1 +
                   weight22 * sum_node_der2)

    print('log ders 1:{lgd1} 2:{lgd2}'.format(lgd1=log_der1,
                                              lgd2=log_der2))
    assert_almost_equal(log_der1, child1.log_der, 15)
    assert_almost_equal(log_der2, child2.log_der, 15)
예제 #28
0
    def linked_kernel_density_estimation(cls,
                                         n_instances,
                                         features,
                                         node_dict=None,
                                         alpha=0.1
                                         # ,batch_size=1,
                                         # sparse=False
                                         ):
        """
        WRITEME
        """

        n_features = len(features)

        # the top one is a sum layer with a single node
        root_node = SumNode()
        root_layer = SumLayerLinked([root_node])

        # second one is a product layer with n_instances nodes
        product_nodes = [ProductNode() for i in range(n_instances)]
        product_layer = ProductLayerLinked(product_nodes)
        # linking them to the root node
        for prod_node in product_nodes:
            root_node.add_child(prod_node, 1. / n_instances)

        # last layer can be a categorical smoothed input
        # or sum_layer + categorical indicator input

        input_layer = None
        layers = None
        n_leaf_nodes = n_features * n_instances

        if node_dict is None:
            # creating a sum_layer with n_leaf_nodes
            sum_nodes = [SumNode() for i in range(n_leaf_nodes)]
            # store them into a layer
            sum_layer = SumLayerLinked(sum_nodes)
            # linking them to the products above
            for i, prod_node in enumerate(product_nodes):
                for j in range(n_features):
                    # getting the next n_features nodes
                    prod_node.add_child(sum_nodes[i * n_features + j])
            # now creating the indicator nodes
            input_layer = \
                CategoricalIndicatorLayerLinked(vars=features)
            # linking the sum nodes to the indicator vars
            for i, sum_node in enumerate(sum_nodes):
                # getting the feature id
                j = i % n_features
                # and thus its number of values
                n_values = features[j]
                # getting the indices of indicators
                start_index = sum(features[:j])
                end_index = start_index + n_values
                indicators = [node for node in input_layer.nodes()
                              ][start_index:end_index]
                for ind_node in indicators:
                    sum_node.add_child(ind_node, 1. / n_values)

            # storing levels
            layers = [sum_layer, product_layer, root_layer]
        else:
            # create a categorical smoothed layer
            input_layer = \
                CategoricalSmoothedLayerLinked(vars=features,
                                               node_dicts=node_dict,
                                               alpha=alpha)
            # it shall contain n_leaf_nodes nodes
            smooth_nodes = list(input_layer.nodes())
            assert len(smooth_nodes) == n_leaf_nodes

            # linking it
            for i, prod_node in enumerate(product_nodes):
                for j in range(n_features):
                    # getting the next n_features nodes
                    prod_node.add_child(smooth_nodes[i * n_features + j])
            # setting the used levels
            layers = [product_layer, root_layer]

        # create the spn from levels
        kern_spn = SpnLinked(input_layer, layers)
        return kern_spn
예제 #29
0
def test_build_linked_spn_from_scope_graph():

    #
    # creating a region graph as an input scope graph
    n_cols = 2
    n_rows = 2
    coarse = 2
    #
    # create initial region
    root_region = Region.create_whole_region(n_rows, n_cols)

    region_graph = create_poon_region_graph(root_region, coarse=coarse)

    # print(region_graph)
    print('# partitions', region_graph.n_partitions())
    print('# regions', region_graph.n_scopes())

    print(region_graph)

    #
    #
    k = 2
    spn = build_linked_spn_from_scope_graph(region_graph, k)

    print(spn)

    print(spn.stats())

    #
    # back to the scope graph
    root_layer = list(spn.root_layer().nodes())
    assert len(root_layer) == 1
    root = root_layer[0]

    scope_graph = get_scope_graph_from_linked_spn(root)
    print(scope_graph)

    assert scope_graph == region_graph

    #
    # building an spn from scratch
    #
    # building leaf nodes
    n_vars = 4
    vars = [0, 1, 2, 3]
    leaves = [
        CategoricalIndicatorNode(var, val) for var in range(n_vars)
        for val in [0, 1]
    ]
    input_layer = CategoricalIndicatorLayer(nodes=leaves, vars=vars)

    #
    # building root
    root_node = SumNode(var_scope=frozenset(vars))
    root_layer = SumLayer([root_node])

    #
    # building product nodes
    prod_list_1 = [ProductNode(var_scope=vars) for i in range(4)]
    prod_list_2 = [ProductNode(var_scope=vars) for i in range(4)]
    prod_nodes_1 = prod_list_1 + prod_list_2
    product_layer_1 = ProductLayer(prod_nodes_1)

    for p in prod_nodes_1:
        root_node.add_child(p, 1.0 / len(prod_nodes_1))

    #
    # build sum nodes
    sum_list_1 = [SumNode() for i in range(2)]
    sum_list_2 = [SumNode() for i in range(2)]
    sum_list_3 = [SumNode() for i in range(2)]
    sum_list_4 = [SumNode() for i in range(2)]

    sum_layer_2 = SumLayer(sum_list_1 + sum_list_2 + sum_list_3 + sum_list_4)

    sum_pairs = []
    for s_1 in sum_list_1:
        for s_2 in sum_list_2:
            sum_pairs.append((s_1, s_2))

    for p, (s_1, s_2) in zip(prod_list_1, sum_pairs):
        p.add_child(s_1)
        p.add_child(s_2)

    sum_pairs = []
    for s_3 in sum_list_3:
        for s_4 in sum_list_4:
            sum_pairs.append((s_3, s_4))

    for p, (s_3, s_4) in zip(prod_list_2, sum_pairs):
        p.add_child(s_3)
        p.add_child(s_4)

    #
    # again product nodes
    prod_list_3 = [ProductNode() for i in range(4)]
    prod_list_4 = [ProductNode() for i in range(4)]
    prod_list_5 = [ProductNode() for i in range(4)]
    prod_list_6 = [ProductNode() for i in range(4)]

    product_layer_3 = ProductLayer(prod_list_3 + prod_list_4 + prod_list_5 +
                                   prod_list_6)

    for s in sum_list_1:
        for p in prod_list_3:
            s.add_child(p, 1.0 / len(prod_list_3))

    for s in sum_list_2:
        for p in prod_list_4:
            s.add_child(p, 1.0 / len(prod_list_4))

    for s in sum_list_3:
        for p in prod_list_5:
            s.add_child(p, 1.0 / len(prod_list_5))

    for s in sum_list_4:
        for p in prod_list_6:
            s.add_child(p, 1.0 / len(prod_list_6))

    #
    # build sum nodes
    sum_list_5 = [SumNode() for i in range(2)]
    sum_list_6 = [SumNode() for i in range(2)]
    sum_list_7 = [SumNode() for i in range(2)]
    sum_list_8 = [SumNode() for i in range(2)]

    sum_layer_4 = SumLayer(sum_list_5 + sum_list_6 + sum_list_7 + sum_list_8)

    sum_pairs = []
    for s_5 in sum_list_5:
        for s_7 in sum_list_7:
            sum_pairs.append((s_5, s_7))

    for p, (s_5, s_7) in zip(prod_list_3, sum_pairs):
        p.add_child(s_5)
        p.add_child(s_7)

    sum_pairs = []
    for s_6 in sum_list_6:
        for s_8 in sum_list_8:
            sum_pairs.append((s_6, s_8))

    for p, (s_6, s_8) in zip(prod_list_4, sum_pairs):
        p.add_child(s_6)
        p.add_child(s_8)

    sum_pairs = []
    for s_5 in sum_list_5:
        for s_6 in sum_list_6:
            sum_pairs.append((s_5, s_6))

    for p, (s_5, s_6) in zip(prod_list_5, sum_pairs):
        p.add_child(s_5)
        p.add_child(s_6)

    sum_pairs = []
    for s_7 in sum_list_7:
        for s_8 in sum_list_8:
            sum_pairs.append((s_7, s_8))

    for p, (s_7, s_8) in zip(prod_list_6, sum_pairs):
        p.add_child(s_7)
        p.add_child(s_8)

    #
    # linking to input layer
    for s in sum_list_5:
        for i in leaves[0:2]:
            s.add_child(i, 0.5)

    for s in sum_list_6:
        for i in leaves[2:4]:
            s.add_child(i, 0.5)

    for s in sum_list_7:
        for i in leaves[4:6]:
            s.add_child(i, 0.5)

    for s in sum_list_8:
        for i in leaves[6:]:
            s.add_child(i, 0.5)

    lspn = LinkedSpn(input_layer=input_layer,
                     layers=[
                         sum_layer_4, product_layer_3, sum_layer_2,
                         product_layer_1, root_layer
                     ])
    print(lspn)
    print(lspn.stats())

    #
    # trying to evaluate them
    input_vec = numpy.array([[1., 1., 1., 0.], [0., 0., 0., 0.],
                             [0., 1., 1., 0.],
                             [MARG_IND, MARG_IND, MARG_IND, MARG_IND]]).T

    res = spn.eval(input_vec)
    print('First evaluation')
    print(res)

    res = lspn.eval(input_vec)
    print('Second evaluation')
    print(res)