예제 #1
0
 def test_06(self):
     lmbda = 1e-1
     W = np.ones(self.S.shape[0:2] + (1, self.S.shape[2], 1))
     opt = cbpdndl.ConvBPDNMaskDcplDictLearn.Options({'MaxMainIter' : 10})
     try:
         b = cbpdndl.ConvBPDNMaskDcplDictLearn(self.D0, self.S, lmbda, W,
                                               opt=opt)
         b.solve()
     except Exception as e:
         print(e)
         assert(0)
예제 #2
0
 def test_09(self):
     N = 16
     Nc = 3
     Nd = 5
     M = 4
     K = 3
     D0 = np.random.randn(Nd, Nd, 1, M)
     S = np.random.randn(N, N, Nc, K)
     lmbda = 1e-1
     W = np.ones((N, N, Nc, K, 1))
     opt = cbpdndl.ConvBPDNMaskDcplDictLearn.Options({'MaxMainIter': 10})
     try:
         b = cbpdndl.ConvBPDNMaskDcplDictLearn(D0, S, lmbda, W, opt=opt)
         b.solve()
     except Exception as e:
         print(e)
         assert(0)
예제 #3
0
 def test_18(self):
     lmbda = 1e-1
     W = np.ones(self.S.shape[0:2] + (1, self.S.shape[2], 1))
     Nit = 10
     opts = cbpdndl.ConvBPDNMaskDcplDictLearn.Options({
         'MaxMainIter': Nit,
         'AccurateDFid': True,
         'CBPDN': {
             'RelaxParam': 1.8,
             'AutoRho': {
                 'Enabled': False
             }
         },
         'CCMOD': {
             'RelaxParam': 1.8,
             'AutoRho': {
                 'Enabled': False
             }
         }
     })
     bs = cbpdndl.ConvBPDNMaskDcplDictLearn(self.D0,
                                            self.S,
                                            lmbda,
                                            W,
                                            opt=opts,
                                            method='cns')
     Ds = bs.solve()
     optp = parcnsdl.ConvBPDNDictLearn_Consensus.Options({
         'MaxMainIter': Nit,
         'CBPDN': {
             'RelaxParam': 1.8
         },
         'CCMOD': {
             'RelaxParam': 1.8
         }
     })
     bp = parcnsdl.ConvBPDNMaskDcplDictLearn_Consensus(self.D0,
                                                       self.S,
                                                       lmbda,
                                                       W,
                                                       opt=optp,
                                                       nproc=2)
     Dp = bp.solve()
     assert (np.linalg.norm(Ds - Dp) < 1e-7)
     assert (np.abs(bs.getitstat().ObjFun[-1] - bp.getitstat().ObjFun[-1]) <
             1e-7)
예제 #4
0
sr1 = d1.reconstruct()[:-Npr, :-Npc].squeeze() + sl

# Solve ConvBPDNMaskDcplDictLearn problem
opt2 = cbpdndl.ConvBPDNMaskDcplDictLearn.Options({
    'Verbose': True,
    'MaxMainIter': 200,
    'AccurateDFid': True,
    'CBPDN': {
        'rho': 50.0 * lmbda + 0.5
    },
    'CCMOD': {
        'ZeroMean': True
    }
})
Wr = np.reshape(W, W.shape[0:3] + (W.shape[3], 1))
d2 = cbpdndl.ConvBPDNMaskDcplDictLearn(D0, shpw, lmbda, Wr, opt2)
D2 = d2.solve()

# Reconstruct from ConvBPDNMaskDcplDictLearn solution
sr2 = d2.reconstruct()[:-Npr, :-Npc].squeeze() + sl

# Compare dictionaries
fig1 = plot.figure(1, figsize=(14, 7))
plot.subplot(1, 2, 1)
plot.imview(util.tiledict(D1.squeeze()),
            fgrf=fig1,
            title='Without Mask Decoupling')
plot.subplot(1, 2, 2)
plot.imview(util.tiledict(D2.squeeze()),
            fgrf=fig1,
            title='With Mask Decoupling')
예제 #5
0
def gengraphs(pth, nopyfftw):
    """
    Generate call graph images when necessary. Parameter pth is the path
    to the directory in which images are to be created. Parameter nopyfftw
    is a flag indicating whether it is necessary to avoid using pyfftw.
    """

    srcmodflt = '^sporco.admm'
    srcqnmflt = r'^((?!<locals>|__new|_name_nested).)*$'
    dstqnmflt = r'^((?!<locals>|__new|_name_nested).)*$'

    fnmsub = ('^sporco.admm.', '')
    grpflt = r'^[^\.]*.[^\.]*'
    lnksub = (r'^([^\.]*).(.*)',
              r'../../sporco.admm.\1.html#sporco.admm.\1.\2')

    fntsz = 9
    fntfm = 'Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans'
    kwargs = {'fntsz': fntsz, 'fntfm': fntfm, 'rmsz': True}

    ct = jonga.CallTracer(srcmodflt=srcmodflt,
                          srcqnmflt=srcqnmflt,
                          dstqnmflt=dstqnmflt,
                          fnmsub=fnmsub,
                          grpflt=grpflt,
                          lnksub=lnksub)

    # Make destination directory if it doesn't exist
    if not os.path.exists(pth):
        os.makedirs(pth, exist_ok=True)

    # Handle environment in which pyfftw is unavailable
    if nopyfftw:
        import numpy.fft as npfft
        import sporco.linalg as spl

        def empty(shape, dtype, order='C', n=None):
            return np.zeros(shape, dtype=dtype)

        spl.pyfftw_empty_aligned = empty

        def rfftn_empty(shape, axes, dtype, order='C', n=None):
            ashp = list(shape)
            raxis = axes[-1]
            ashp[raxis] = ashp[raxis] // 2 + 1
            cdtype = spl.complex_dtype(dtype)
            return np.zeros(ashp, dtype=cdtype)

        spl.pyfftw_rfftn_empty_aligned = rfftn_empty

        spl.fftn = npfft.fftn
        spl.ifftn = npfft.ifftn
        spl.rfftn = npfft.rfftn
        spl.irfftn = npfft.irfftn

    import numpy as np
    np.random.seed(12345)

    #### bpdn module
    from sporco.admm import bpdn
    mdnm = 'sporco.admm.bpdn'

    D = np.random.randn(8, 16)
    s = np.random.randn(8, 1)
    lmbda = 0.1

    ## BPDN class
    opt = bpdn.BPDN.Options({'Verbose': False, 'MaxMainIter': 1})

    with CallGraph(ct, mdnm, pth, 'bpdn_init.svg', **kwargs):
        b = bpdn.BPDN(D, s, lmbda, opt)

    with CallGraph(ct, mdnm, pth, 'bpdn_solve.svg', **kwargs):
        b.solve()

    ## BPDNJoint class
    opt = bpdn.BPDNJoint.Options({'Verbose': False, 'MaxMainIter': 1})
    mu = 0.01

    with CallGraph(ct, mdnm, pth, 'bpdnjnt_init.svg', **kwargs):
        b = bpdn.BPDNJoint(D, s, lmbda, mu, opt)

    with CallGraph(ct, mdnm, pth, 'bpdnjnt_solve.svg', **kwargs):
        b.solve()

    ## ElasticNet class
    opt = bpdn.ElasticNet.Options({'Verbose': False, 'MaxMainIter': 1})

    with CallGraph(ct, mdnm, pth, 'elnet_init.svg', **kwargs):
        b = bpdn.ElasticNet(D, s, lmbda, mu, opt)

    with CallGraph(ct, mdnm, pth, 'elnet_solve.svg', **kwargs):
        b.solve()

    # BPDNProjL1 class
    opt = bpdn.BPDNProjL1.Options({'Verbose': False, 'MaxMainIter': 1})
    gamma = 2.0

    with CallGraph(ct, mdnm, pth, 'bpdnprjl1_init.svg', **kwargs):
        b = bpdn.BPDNProjL1(D, s, gamma, opt)

    with CallGraph(ct, mdnm, pth, 'bpdnprjl1_solve.svg', **kwargs):
        b.solve()

    ## MinL1InL2Ball class
    opt = bpdn.MinL1InL2Ball.Options({'Verbose': False, 'MaxMainIter': 1})
    epsilon = 1.0

    with CallGraph(ct, mdnm, pth, 'bpdnml1l2_init.svg', **kwargs):
        b = bpdn.MinL1InL2Ball(D, s, epsilon, opt)

    with CallGraph(ct, mdnm, pth, 'bpdnml1l2_solve.svg', **kwargs):
        b.solve()

    #### cbpdn module
    from sporco.admm import cbpdn
    mdnm = 'sporco.admm.cbpdn'

    D = np.random.randn(4, 4, 16)
    s = np.random.randn(8, 8)
    lmbda = 0.1

    ## ConvBPDN class
    opt = cbpdn.ConvBPDN.Options({'Verbose': False, 'MaxMainIter': 1})

    with CallGraph(ct, mdnm, pth, 'cbpdn_init.svg', **kwargs):
        b = cbpdn.ConvBPDN(D, s, lmbda, opt)

    with CallGraph(ct, mdnm, pth, 'cbpdn_solve.svg', **kwargs):
        b.solve()

    ## ConvBPDNJoint class
    opt = cbpdn.ConvBPDNJoint.Options({'Verbose': False, 'MaxMainIter': 1})
    mu = 0.01

    with CallGraph(ct, mdnm, pth, 'cbpdnjnt_init.svg', **kwargs):
        b = cbpdn.ConvBPDNJoint(D, s, lmbda, mu, opt)

    with CallGraph(ct, mdnm, pth, 'cbpdnjnt_solve.svg', **kwargs):
        b.solve()

    ## ConvElasticNet class
    opt = cbpdn.ConvElasticNet.Options({'Verbose': False, 'MaxMainIter': 1})

    with CallGraph(ct, mdnm, pth, 'celnet_init.svg', **kwargs):
        b = cbpdn.ConvElasticNet(D, s, lmbda, mu, opt)

    with CallGraph(ct, mdnm, pth, 'celnet_solve.svg', **kwargs):
        b.solve()

    ## ConvBPDNGradReg class
    opt = cbpdn.ConvBPDNGradReg.Options({'Verbose': False, 'MaxMainIter': 1})

    with CallGraph(ct, mdnm, pth, 'cbpdngrd_init.svg', **kwargs):
        b = cbpdn.ConvBPDNGradReg(D, s, lmbda, mu, opt)

    with CallGraph(ct, mdnm, pth, 'cbpdngrd_solve.svg', **kwargs):
        b.solve()

    ## ConvBPDNProjL1 class
    opt = cbpdn.ConvBPDNProjL1.Options({'Verbose': False, 'MaxMainIter': 1})
    gamma = 0.5

    with CallGraph(ct, mdnm, pth, 'cbpdnprjl1_init.svg', **kwargs):
        b = cbpdn.ConvBPDNProjL1(D, s, gamma, opt)

    with CallGraph(ct, mdnm, pth, 'cbpdnprjl1_solve.svg', **kwargs):
        b.solve()

    ## ConvMinL1InL2Ball class
    opt = cbpdn.ConvMinL1InL2Ball.Options({'Verbose': False, 'MaxMainIter': 1})
    epsilon = 0.5

    with CallGraph(ct, mdnm, pth, 'cbpdnml1l2_init.svg', **kwargs):
        b = cbpdn.ConvMinL1InL2Ball(D, s, epsilon, opt)

    with CallGraph(ct, mdnm, pth, 'cbpdnml1l2_solve.svg', **kwargs):
        b.solve()

    ## ConvBPDNMaskDcpl class
    opt = cbpdn.ConvBPDNMaskDcpl.Options({'Verbose': False, 'MaxMainIter': 1})
    W = np.ones(s.shape)

    with CallGraph(ct, mdnm, pth, 'cbpdnmd_init.svg', **kwargs):
        b = cbpdn.ConvBPDNMaskDcpl(D, s, lmbda, W, opt)

    with CallGraph(ct, mdnm, pth, 'cbpdnmd_solve.svg', **kwargs):
        b.solve()

    #### cbpdntv module
    from sporco.admm import cbpdntv
    mdnm = 'sporco.admm.cbpdntv'

    D = np.random.randn(4, 4, 16)
    s = np.random.randn(8, 8)
    lmbda = 0.1
    mu = 0.01

    ## ConvBPDNScalarTV class
    opt = cbpdntv.ConvBPDNScalarTV.Options({
        'Verbose': False,
        'MaxMainIter': 1
    })

    with CallGraph(ct, mdnm, pth, 'cbpdnstv_init.svg', **kwargs):
        b = cbpdntv.ConvBPDNScalarTV(D, s, lmbda, mu, opt)

    with CallGraph(ct, mdnm, pth, 'cbpdnstv_solve.svg', **kwargs):
        b.solve()

    ## ConvBPDNVectorTV class
    opt = cbpdntv.ConvBPDNVectorTV.Options({
        'Verbose': False,
        'MaxMainIter': 1
    })

    with CallGraph(ct, mdnm, pth, 'cbpdnvtv_init.svg', **kwargs):
        b = cbpdntv.ConvBPDNVectorTV(D, s, lmbda, mu, opt)

    with CallGraph(ct, mdnm, pth, 'cbpdnvtv_solve.svg', **kwargs):
        b.solve()

    ## ConvBPDNRecTV class
    opt = cbpdntv.ConvBPDNRecTV.Options({'Verbose': False, 'MaxMainIter': 1})

    with CallGraph(ct, mdnm, pth, 'cbpdnrtv_init.svg', **kwargs):
        b = cbpdntv.ConvBPDNRecTV(D, s, lmbda, mu, opt)

    with CallGraph(ct, mdnm, pth, 'cbpdnrtv_solve.svg', **kwargs):
        b.solve()

    #### cmod module
    from sporco.admm import cmod
    mdnm = 'sporco.admm.cmod'

    X = np.random.randn(8, 16)
    S = np.random.randn(8, 16)

    ## CnstrMOD class
    opt = cmod.CnstrMOD.Options({'Verbose': False, 'MaxMainIter': 1})

    with CallGraph(ct, mdnm, pth, 'cmod_init.svg', **kwargs):
        b = cmod.CnstrMOD(X, S, opt=opt)

    with CallGraph(ct, mdnm, pth, 'cmod_solve.svg', **kwargs):
        b.solve()

    #### ccmod module
    from sporco.admm import ccmod
    mdnm = 'sporco.admm.ccmod'

    X = np.random.randn(8, 8, 1, 2, 1)
    S = np.random.randn(8, 8, 2)
    dsz = (4, 4, 1)

    ## ConvCnstrMOD_IterSM class
    opt = ccmod.ConvCnstrMOD_IterSM.Options({
        'Verbose': False,
        'MaxMainIter': 1
    })

    with CallGraph(ct, mdnm, pth, 'ccmodism_init.svg', **kwargs):
        b = ccmod.ConvCnstrMOD_IterSM(X, S, dsz=dsz, opt=opt)

    with CallGraph(ct, mdnm, pth, 'ccmodism_solve.svg', **kwargs):
        b.solve()

    ## ConvCnstrMOD_CG class
    opt = ccmod.ConvCnstrMOD_CG.Options({
        'Verbose': False,
        'MaxMainIter': 1,
        'CG': {
            'MaxIter': 1
        }
    })

    with CallGraph(ct, mdnm, pth, 'ccmodcg_init.svg', **kwargs):
        b = ccmod.ConvCnstrMOD_CG(X, S, dsz=dsz, opt=opt)

    with CallGraph(ct, mdnm, pth, 'ccmodcg_solve.svg', **kwargs):
        b.solve()

    ## ConvCnstrMOD_Consensus class
    opt = ccmod.ConvCnstrMOD_Consensus.Options({
        'Verbose': False,
        'MaxMainIter': 1
    })

    with CallGraph(ct, mdnm, pth, 'ccmodcnsns_init.svg', **kwargs):
        b = ccmod.ConvCnstrMOD_Consensus(X, S, dsz=dsz, opt=opt)

    with CallGraph(ct, mdnm, pth, 'ccmodcnsns_solve.svg', **kwargs):
        b.solve()

    #### ccmodmd module
    from sporco.admm import ccmodmd
    mdnm = 'sporco.admm.ccmodmd'

    X = np.random.randn(8, 8, 1, 2, 1)
    S = np.random.randn(8, 8, 2)
    W = np.array([1.0])
    dsz = (4, 4, 1)

    ## ConvCnstrMODMaskDcpl_IterSM class
    opt = ccmodmd.ConvCnstrMODMaskDcpl_IterSM.Options({
        'Verbose': False,
        'MaxMainIter': 1
    })

    with CallGraph(ct, mdnm, pth, 'ccmodmdism_init.svg', **kwargs):
        b = ccmodmd.ConvCnstrMODMaskDcpl_IterSM(X, S, W, dsz=dsz, opt=opt)

    with CallGraph(ct, mdnm, pth, 'ccmodmdism_solve.svg', **kwargs):
        b.solve()

    ## ConvCnstrMODMaskDcpl_CG class
    opt = ccmodmd.ConvCnstrMODMaskDcpl_CG.Options({
        'Verbose': False,
        'MaxMainIter': 1,
        'CG': {
            'MaxIter': 1
        }
    })

    with CallGraph(ct, mdnm, pth, 'ccmodmdcg_init.svg', **kwargs):
        b = ccmodmd.ConvCnstrMODMaskDcpl_CG(X, S, W, dsz=dsz, opt=opt)

    with CallGraph(ct, mdnm, pth, 'ccmodmdcg_solve.svg', **kwargs):
        b.solve()

    ## ConvCnstrMODMaskDcpl_Consensus class
    opt = ccmodmd.ConvCnstrMODMaskDcpl_Consensus.Options({
        'Verbose': False,
        'MaxMainIter': 1
    })

    with CallGraph(ct, mdnm, pth, 'ccmodmdcnsns_init.svg', **kwargs):
        b = ccmodmd.ConvCnstrMODMaskDcpl_Consensus(X, S, W, dsz=dsz, opt=opt)

    with CallGraph(ct, mdnm, pth, 'ccmodmdcnsns_solve.svg', **kwargs):
        b.solve()

    #### bpdndl module
    from sporco.admm import bpdndl
    mdnm = 'sporco.admm.bpdndl'

    D0 = np.random.randn(8, 8)
    S = np.random.randn(8, 16)
    lmbda = 0.1

    ## BPDNDictLearn class
    opt = bpdndl.BPDNDictLearn.Options({
        'Verbose': False,
        'MaxMainIter': 1,
        'AccurateDFid': True
    })

    with CallGraph(ct, mdnm, pth, 'bpdndl_init.svg', **kwargs):
        b = bpdndl.BPDNDictLearn(D0, S, lmbda, opt)

    with CallGraph(ct, mdnm, pth, 'bpdndl_solve.svg', **kwargs):
        b.solve()

    #### cbpdndl module
    from sporco.admm import cbpdndl
    mdnm = 'sporco.admm.cbpdndl'

    D0 = np.random.randn(4, 4, 16)
    s = np.random.randn(8, 8, 10)
    lmbda = 0.1

    ## ConvBPDNDictLearn class
    opt = cbpdndl.ConvBPDNDictLearn.Options({
        'Verbose': False,
        'MaxMainIter': 1,
        'AccurateDFid': True
    })

    with CallGraph(ct, mdnm, pth, 'cbpdndl_init.svg', **kwargs):
        b = cbpdndl.ConvBPDNDictLearn(D0, s, lmbda, opt)

    with CallGraph(ct, mdnm, pth, 'cbpdndl_solve.svg', **kwargs):
        b.solve()

    ## ConvBPDNMaskDcplDictLearn class
    W = np.array([1.0])
    opt = cbpdndl.ConvBPDNMaskDcplDictLearn.Options({
        'Verbose': False,
        'MaxMainIter': 1,
        'AccurateDFid': True
    })

    with CallGraph(ct, mdnm, pth, 'cbpdnmddl_init.svg', **kwargs):
        b = cbpdndl.ConvBPDNMaskDcplDictLearn(D0, s, lmbda, W, opt)

    with CallGraph(ct, mdnm, pth, 'cbpdnmddl_solve.svg', **kwargs):
        b.solve()

    #### tvl1 module
    from sporco.admm import tvl1
    mdnm = 'sporco.admm.tvl1'

    s = np.random.randn(16, 16)
    lmbda = 0.1

    ## TVL1Denoise class
    opt = tvl1.TVL1Denoise.Options({'Verbose': False, 'MaxMainIter': 1})

    with CallGraph(ct, mdnm, pth, 'tvl1den_init.svg', **kwargs):
        b = tvl1.TVL1Denoise(s, lmbda, opt)

    with CallGraph(ct, mdnm, pth, 'tvl1den_solve.svg', **kwargs):
        b.solve()

    ## TVL1Deconv class
    opt = tvl1.TVL1Deconv.Options({'Verbose': False, 'MaxMainIter': 1})
    h = np.random.randn(3, 3)

    with CallGraph(ct, mdnm, pth, 'tvl1dcn_init.svg', **kwargs):
        b = tvl1.TVL1Deconv(h, s, lmbda, opt)

    with CallGraph(ct, mdnm, pth, 'tvl1dcn_solve.svg', **kwargs):
        b.solve()

    #### tvl2 module
    from sporco.admm import tvl2
    mdnm = 'sporco.admm.tvl2'

    s = np.random.randn(16, 16)
    lmbda = 0.1

    ## TVL2Denoise class
    opt = tvl2.TVL2Denoise.Options({'Verbose': False, 'MaxMainIter': 1})

    with CallGraph(ct, mdnm, pth, 'tvl2den_init.svg', **kwargs):
        b = tvl2.TVL2Denoise(s, lmbda, opt)

    with CallGraph(ct, mdnm, pth, 'tvl2den_solve.svg', **kwargs):
        b.solve()

    ## TVL2Deconv class
    opt = tvl2.TVL2Deconv.Options({'Verbose': False, 'MaxMainIter': 1})
    h = np.random.randn(3, 3)

    with CallGraph(ct, mdnm, pth, 'tvl2dcn_init.svg', **kwargs):
        b = tvl2.TVL2Deconv(h, s, lmbda, opt)

    with CallGraph(ct, mdnm, pth, 'tvl2dcn_solve.svg', **kwargs):
        b.solve()

    srcmodflt = '^sporco.fista'
    fnmsub = ('^sporco.fista.', '')
    lnksub = (r'^([^\.]*).(.*)',
              r'../../sporco.fista.\1.html#sporco.fista.\1.\2')
    ct = jonga.CallTracer(srcmodflt=srcmodflt,
                          srcqnmflt=srcqnmflt,
                          dstqnmflt=dstqnmflt,
                          fnmsub=fnmsub,
                          grpflt=grpflt,
                          lnksub=lnksub)

    #### fista.cbpdn module
    from sporco.fista import cbpdn
    mdnm = 'sporco.fista.cbpdn'

    D = np.random.randn(4, 4, 16)
    s = np.random.randn(8, 8)
    lmbda = 0.1

    ## ConvBPDN class
    opt = cbpdn.ConvBPDN.Options({'Verbose': False, 'MaxMainIter': 1})

    with CallGraph(ct, mdnm, pth, 'fista_cbpdn_init.svg', **kwargs):
        b = cbpdn.ConvBPDN(D, s, lmbda, opt)

    with CallGraph(ct, mdnm, pth, 'fista_cbpdn_solve.svg', **kwargs):
        b.solve()

    #### fista.ccmod module
    from sporco.fista import ccmod
    mdnm = 'sporco.fista.ccmod'

    X = np.random.randn(8, 8, 1, 2, 1)
    S = np.random.randn(8, 8, 2)
    dsz = (4, 4, 1)

    ## ConvCnstrMOD class
    opt = ccmod.ConvCnstrMOD.Options({'Verbose': False, 'MaxMainIter': 1})

    with CallGraph(ct, mdnm, pth, 'ccmodfista_init.svg', **kwargs):
        b = ccmod.ConvCnstrMOD(X, S, dsz=dsz, opt=opt)

    with CallGraph(ct, mdnm, pth, 'ccmodfista_solve.svg', **kwargs):
        b.solve()

    ## ConvCnstrMODMaskDcpl class
    opt = ccmod.ConvCnstrMODMask.Options({'Verbose': False, 'MaxMainIter': 1})

    with CallGraph(ct, mdnm, pth, 'ccmodmdfista_init.svg', **kwargs):
        b = ccmod.ConvCnstrMODMask(X, S, W, dsz=dsz, opt=opt)

    with CallGraph(ct, mdnm, pth, 'ccmodmdfista_solve.svg', **kwargs):
        b.solve()