'Verbose': False, 'MaxMainIter': 1, 'rho': S.shape[1] / 200.0 }) # Normalise dictionary according to D update options D0 = cmod.getPcn(optd['ZeroMean'])(D0) # Update D update options to include initial values for Y and U optd.update({'Y0': D0, 'U0': np.zeros((S.shape[0], D0.shape[1]))}) # Create X update object xstep = bpdn.BPDN(D0, S, lmbda, optx) # Create D update object dstep = cmod.CnstrMOD(None, S, (D0.shape[1], S.shape[1]), optd) # Create DictLearn object opt = dictlrn.DictLearn.Options({'Verbose': True, 'MaxMainIter': 100}) d = dictlrn.DictLearn(xstep, dstep, opt) Dmx = d.solve() print("DictLearn solve time: %.2fs" % d.timer.elapsed('solve')) # Display dictionaries D1 = Dmx.reshape((8, 8, D0.shape[1])) D0 = D0.reshape(8, 8, D0.shape[-1]) fig1 = plot.figure(1, figsize=(14, 7)) plot.subplot(1, 2, 1) plot.imview(util.tiledict(D0), fgrf=fig1, title='D0') plot.subplot(1, 2, 2) plot.imview(util.tiledict(D1), fgrf=fig1, title='D1')
""" lmbda = 0.1 opt = bpdn.BPDN.Options({'Verbose': True, 'MaxMainIter': 200, 'RelStopTol': 1e-3}) b = bpdn.BPDN(D0, S, lmbda, opt) X = b.solve() """ Update dictionary for training image set. """ opt = cmod.CnstrMOD.Options({'Verbose': True, 'MaxMainIter': 100, 'RelStopTol': 1e-3, 'rho': 4e2}) c = cmod.CnstrMOD(X, S, None, opt) D1 = c.solve() print("CMOD solve time: %.2fs" % c.timer.elapsed('solve')) """ Display initial and final dictionaries. """ D0 = D0.reshape((8, 8, D0.shape[-1])) D1 = D1.reshape((8, 8, D1.shape[-1])) fig = plot.figure(figsize=(14, 7)) plot.subplot(1, 2, 1) plot.imview(util.tiledict(D0), fig=fig, title='D0') plot.subplot(1, 2, 2) plot.imview(util.tiledict(D1), fig=fig, title='D1')
def gengraphs(pth, nopyfftw): """ Generate call graph images when necessary. Parameter pth is the path to the directory in which images are to be created. Parameter nopyfftw is a flag indicating whether it is necessary to avoid using pyfftw. """ srcmodflt = '^sporco.admm' srcqnmflt = r'^((?!<locals>|__new|_name_nested).)*$' dstqnmflt = r'^((?!<locals>|__new|_name_nested).)*$' fnmsub = ('^sporco.admm.', '') grpflt = r'^[^\.]*.[^\.]*' lnksub = (r'^([^\.]*).(.*)', r'../../sporco.admm.\1.html#sporco.admm.\1.\2') fntsz = 9 fntfm = 'Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans' kwargs = {'fntsz': fntsz, 'fntfm': fntfm, 'rmsz': True} ct = jonga.CallTracer(srcmodflt=srcmodflt, srcqnmflt=srcqnmflt, dstqnmflt=dstqnmflt, fnmsub=fnmsub, grpflt=grpflt, lnksub=lnksub) # Make destination directory if it doesn't exist if not os.path.exists(pth): os.makedirs(pth, exist_ok=True) # Handle environment in which pyfftw is unavailable if nopyfftw: import numpy.fft as npfft import sporco.linalg as spl def empty(shape, dtype, order='C', n=None): return np.zeros(shape, dtype=dtype) spl.pyfftw_empty_aligned = empty spl.fftn = npfft.fftn spl.ifftn = npfft.ifftn spl.rfftn = npfft.rfftn spl.irfftn = npfft.irfftn import numpy as np np.random.seed(12345) #### bpdn module from sporco.admm import bpdn mdnm = 'sporco.admm.bpdn' D = np.random.randn(8, 16) s = np.random.randn(8, 1) lmbda = 0.1 ## BPDN class opt = bpdn.BPDN.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'bpdn_init.svg', **kwargs): b = bpdn.BPDN(D, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'bpdn_solve.svg', **kwargs): b.solve() ## BPDNJoint class opt = bpdn.BPDNJoint.Options({'Verbose': False, 'MaxMainIter': 1}) mu = 0.01 with CallGraph(ct, mdnm, pth, 'bpdnjnt_init.svg', **kwargs): b = bpdn.BPDNJoint(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'bpdnjnt_solve.svg', **kwargs): b.solve() ## ElasticNet class opt = bpdn.ElasticNet.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'elnet_init.svg', **kwargs): b = bpdn.ElasticNet(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'elnet_solve.svg', **kwargs): b.solve() # BPDNProjL1 class opt = bpdn.BPDNProjL1.Options({'Verbose': False, 'MaxMainIter': 1}) gamma = 2.0 with CallGraph(ct, mdnm, pth, 'bpdnprjl1_init.svg', **kwargs): b = bpdn.BPDNProjL1(D, s, gamma, opt) with CallGraph(ct, mdnm, pth, 'bpdnprjl1_solve.svg', **kwargs): b.solve() ## MinL1InL2Ball class opt = bpdn.MinL1InL2Ball.Options({'Verbose': False, 'MaxMainIter': 1}) epsilon = 1.0 with CallGraph(ct, mdnm, pth, 'bpdnml1l2_init.svg', **kwargs): b = bpdn.MinL1InL2Ball(D, s, epsilon, opt) with CallGraph(ct, mdnm, pth, 'bpdnml1l2_solve.svg', **kwargs): b.solve() #### cbpdn module from sporco.admm import cbpdn mdnm = 'sporco.admm.cbpdn' D = np.random.randn(4, 4, 16) s = np.random.randn(8, 8) lmbda = 0.1 ## ConvBPDN class opt = cbpdn.ConvBPDN.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cbpdn_init.svg', **kwargs): b = cbpdn.ConvBPDN(D, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'cbpdn_solve.svg', **kwargs): b.solve() ## ConvBPDNJoint class opt = cbpdn.ConvBPDNJoint.Options({'Verbose': False, 'MaxMainIter': 1}) mu = 0.01 with CallGraph(ct, mdnm, pth, 'cbpdnjnt_init.svg', **kwargs): b = cbpdn.ConvBPDNJoint(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnjnt_solve.svg', **kwargs): b.solve() ## ConvElasticNet class opt = cbpdn.ConvElasticNet.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'celnet_init.svg', **kwargs): b = cbpdn.ConvElasticNet(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'celnet_solve.svg', **kwargs): b.solve() ## ConvBPDNGradReg class opt = cbpdn.ConvBPDNGradReg.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cbpdngrd_init.svg', **kwargs): b = cbpdn.ConvBPDNGradReg(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdngrd_solve.svg', **kwargs): b.solve() ## ConvBPDNProjL1 class opt = cbpdn.ConvBPDNProjL1.Options({'Verbose': False, 'MaxMainIter': 1}) gamma = 0.5 with CallGraph(ct, mdnm, pth, 'cbpdnprjl1_init.svg', **kwargs): b = cbpdn.ConvBPDNProjL1(D, s, gamma, opt) with CallGraph(ct, mdnm, pth, 'cbpdnprjl1_solve.svg', **kwargs): b.solve() ## ConvMinL1InL2Ball class opt = cbpdn.ConvMinL1InL2Ball.Options({'Verbose': False, 'MaxMainIter': 1}) epsilon = 0.5 with CallGraph(ct, mdnm, pth, 'cbpdnml1l2_init.svg', **kwargs): b = cbpdn.ConvMinL1InL2Ball(D, s, epsilon, opt) with CallGraph(ct, mdnm, pth, 'cbpdnml1l2_solve.svg', **kwargs): b.solve() ## ConvBPDNMaskDcpl class opt = cbpdn.ConvBPDNMaskDcpl.Options({'Verbose': False, 'MaxMainIter': 1}) W = np.ones(s.shape) with CallGraph(ct, mdnm, pth, 'cbpdnmd_init.svg', **kwargs): b = cbpdn.ConvBPDNMaskDcpl(D, s, lmbda, W, opt) with CallGraph(ct, mdnm, pth, 'cbpdnmd_solve.svg', **kwargs): b.solve() #### cbpdntv module from sporco.admm import cbpdntv mdnm = 'sporco.admm.cbpdntv' D = np.random.randn(4, 4, 16) s = np.random.randn(8, 8) lmbda = 0.1 mu = 0.01 ## ConvBPDNScalarTV class opt = cbpdntv.ConvBPDNScalarTV.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'cbpdnstv_init.svg', **kwargs): b = cbpdntv.ConvBPDNScalarTV(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnstv_solve.svg', **kwargs): b.solve() ## ConvBPDNVectorTV class opt = cbpdntv.ConvBPDNVectorTV.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'cbpdnvtv_init.svg', **kwargs): b = cbpdntv.ConvBPDNVectorTV(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnvtv_solve.svg', **kwargs): b.solve() ## ConvBPDNRecTV class opt = cbpdntv.ConvBPDNRecTV.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cbpdnrtv_init.svg', **kwargs): b = cbpdntv.ConvBPDNRecTV(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnrtv_solve.svg', **kwargs): b.solve() #### cmod module from sporco.admm import cmod mdnm = 'sporco.admm.cmod' X = np.random.randn(8, 16) S = np.random.randn(8, 16) ## CnstrMOD class opt = cmod.CnstrMOD.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cmod_init.svg', **kwargs): b = cmod.CnstrMOD(X, S, opt=opt) with CallGraph(ct, mdnm, pth, 'cmod_solve.svg', **kwargs): b.solve() #### ccmod module from sporco.admm import ccmod mdnm = 'sporco.admm.ccmod' X = np.random.randn(8, 8, 1, 2, 1) S = np.random.randn(8, 8, 2) dsz = (4, 4, 1) ## ConvCnstrMOD_IterSM class opt = ccmod.ConvCnstrMOD_IterSM.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodism_init.svg', **kwargs): b = ccmod.ConvCnstrMOD_IterSM(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodism_solve.svg', **kwargs): b.solve() ## ConvCnstrMOD_CG class opt = ccmod.ConvCnstrMOD_CG.Options({ 'Verbose': False, 'MaxMainIter': 1, 'CG': { 'MaxIter': 1 } }) with CallGraph(ct, mdnm, pth, 'ccmodcg_init.svg', **kwargs): b = ccmod.ConvCnstrMOD_CG(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodcg_solve.svg', **kwargs): b.solve() ## ConvCnstrMOD_Consensus class opt = ccmod.ConvCnstrMOD_Consensus.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodcnsns_init.svg', **kwargs): b = ccmod.ConvCnstrMOD_Consensus(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodcnsns_solve.svg', **kwargs): b.solve() #### ccmodmd module from sporco.admm import ccmodmd mdnm = 'sporco.admm.ccmodmd' X = np.random.randn(8, 8, 1, 2, 1) S = np.random.randn(8, 8, 2) W = np.array([1.0]) dsz = (4, 4, 1) ## ConvCnstrMODMaskDcpl_IterSM class opt = ccmodmd.ConvCnstrMODMaskDcpl_IterSM.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodmdism_init.svg', **kwargs): b = ccmodmd.ConvCnstrMODMaskDcpl_IterSM(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdism_solve.svg', **kwargs): b.solve() ## ConvCnstrMODMaskDcpl_CG class opt = ccmodmd.ConvCnstrMODMaskDcpl_CG.Options({ 'Verbose': False, 'MaxMainIter': 1, 'CG': { 'MaxIter': 1 } }) with CallGraph(ct, mdnm, pth, 'ccmodmdcg_init.svg', **kwargs): b = ccmodmd.ConvCnstrMODMaskDcpl_CG(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdcg_solve.svg', **kwargs): b.solve() ## ConvCnstrMODMaskDcpl_Consensus class opt = ccmodmd.ConvCnstrMODMaskDcpl_Consensus.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodmdcnsns_init.svg', **kwargs): b = ccmodmd.ConvCnstrMODMaskDcpl_Consensus(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdcnsns_solve.svg', **kwargs): b.solve() #### bpdndl module from sporco.admm import bpdndl mdnm = 'sporco.admm.bpdndl' D0 = np.random.randn(8, 8) S = np.random.randn(8, 16) lmbda = 0.1 ## BPDNDictLearn class opt = bpdndl.BPDNDictLearn.Options({ 'Verbose': False, 'MaxMainIter': 1, 'AccurateDFid': True }) with CallGraph(ct, mdnm, pth, 'bpdndl_init.svg', **kwargs): b = bpdndl.BPDNDictLearn(D0, S, lmbda, opt) with CallGraph(ct, mdnm, pth, 'bpdndl_solve.svg', **kwargs): b.solve() #### cbpdndl module from sporco.admm import cbpdndl mdnm = 'sporco.admm.cbpdndl' D0 = np.random.randn(4, 4, 16) s = np.random.randn(8, 8, 10) lmbda = 0.1 ## ConvBPDNDictLearn class opt = cbpdndl.ConvBPDNDictLearn.Options({ 'Verbose': False, 'MaxMainIter': 1, 'AccurateDFid': True }) with CallGraph(ct, mdnm, pth, 'cbpdndl_init.svg', **kwargs): b = cbpdndl.ConvBPDNDictLearn(D0, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'cbpdndl_solve.svg', **kwargs): b.solve() ## ConvBPDNMaskDcplDictLearn class W = np.array([1.0]) opt = cbpdndl.ConvBPDNMaskDcplDictLearn.Options({ 'Verbose': False, 'MaxMainIter': 1, 'AccurateDFid': True }) with CallGraph(ct, mdnm, pth, 'cbpdnmddl_init.svg', **kwargs): b = cbpdndl.ConvBPDNMaskDcplDictLearn(D0, s, lmbda, W, opt) with CallGraph(ct, mdnm, pth, 'cbpdnmddl_solve.svg', **kwargs): b.solve() #### tvl1 module from sporco.admm import tvl1 mdnm = 'sporco.admm.tvl1' s = np.random.randn(16, 16) lmbda = 0.1 ## TVL1Denoise class opt = tvl1.TVL1Denoise.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'tvl1den_init.svg', **kwargs): b = tvl1.TVL1Denoise(s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl1den_solve.svg', **kwargs): b.solve() ## TVL1Deconv class opt = tvl1.TVL1Deconv.Options({'Verbose': False, 'MaxMainIter': 1}) h = np.random.randn(3, 3) with CallGraph(ct, mdnm, pth, 'tvl1dcn_init.svg', **kwargs): b = tvl1.TVL1Deconv(h, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl1dcn_solve.svg', **kwargs): b.solve() #### tvl2 module from sporco.admm import tvl2 mdnm = 'sporco.admm.tvl2' s = np.random.randn(16, 16) lmbda = 0.1 ## TVL2Denoise class opt = tvl2.TVL2Denoise.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'tvl2den_init.svg', **kwargs): b = tvl2.TVL2Denoise(s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl2den_solve.svg', **kwargs): b.solve() ## TVL2Deconv class opt = tvl2.TVL2Deconv.Options({'Verbose': False, 'MaxMainIter': 1}) h = np.random.randn(3, 3) with CallGraph(ct, mdnm, pth, 'tvl2dcn_init.svg', **kwargs): b = tvl2.TVL2Deconv(h, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl2dcn_solve.svg', **kwargs): b.solve() srcmodflt = '^sporco.fista' fnmsub = ('^sporco.fista.', '') lnksub = (r'^([^\.]*).(.*)', r'../../sporco.fista.\1.html#sporco.fista.\1.\2') ct = jonga.CallTracer(srcmodflt=srcmodflt, srcqnmflt=srcqnmflt, dstqnmflt=dstqnmflt, fnmsub=fnmsub, grpflt=grpflt, lnksub=lnksub) #### fista.cbpdn module from sporco.fista import cbpdn mdnm = 'sporco.fista.cbpdn' D = np.random.randn(4, 4, 16) s = np.random.randn(8, 8) lmbda = 0.1 ## ConvBPDN class opt = cbpdn.ConvBPDN.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'fista_cbpdn_init.svg', **kwargs): b = cbpdn.ConvBPDN(D, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'fista_cbpdn_solve.svg', **kwargs): b.solve() #### fista.ccmod module from sporco.fista import ccmod mdnm = 'sporco.fista.ccmod' X = np.random.randn(8, 8, 1, 2, 1) S = np.random.randn(8, 8, 2) dsz = (4, 4, 1) ## ConvCnstrMOD class opt = ccmod.ConvCnstrMOD.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'ccmodfista_init.svg', **kwargs): b = ccmod.ConvCnstrMOD(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodfista_solve.svg', **kwargs): b.solve() ## ConvCnstrMODMaskDcpl class opt = ccmod.ConvCnstrMODMaskDcpl.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodmdfista_init.svg', **kwargs): b = ccmod.ConvCnstrMODMaskDcpl(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdfista_solve.svg', **kwargs): b.solve()
import sporco.dictlearn.dictlearn as dictlearn import sporco.cupy.admm.bpdn as bpdn import sporco.admm.cmod as admm import cupy as cp import numpy as np data_ra=np.load('Data_test/data_ra_test',allow_pickle=True) v_ra=np.load('Data_81sets/v_ra',allow_pickle=True) # REMEBER TO TRANSPOSE THE MATRICES IN THE FORMULATION # v_ra.T @ u_ra.T = data_ra.T x=bpdn.BPDN(np2cp(v_ra.T),np2cp(data_ra.T),0.4) u_ra=x. d=admm.CnstrMOD()
def __init__(self, D0, S, lmbda=None, opt=None): """ | **Call graph** .. image:: ../_static/jonga/bpdndl_init.svg :width: 20% :target: ../_static/jonga/bpdndl_init.svg | Parameters ---------- D0 : array_like, shape (N, M) Initial dictionary matrix S : array_like, shape (N, K) Signal vector or matrix lmbda : float Regularisation parameter opt : :class:`BPDNDictLearn.Options` object Algorithm options """ if opt is None: opt = BPDNDictLearn.Options() self.opt = opt # Normalise dictionary according to D update options D0 = cmod.getPcn(opt['CMOD', 'ZeroMean'])(D0) # Modify D update options to include initial values for Y and U Nc = D0.shape[1] opt['CMOD'].update({'Y0': D0, 'U0': np.zeros((S.shape[0], Nc))}) # Create X update object xstep = bpdn.BPDN(D0, S, lmbda, opt['BPDN']) # Create D update object Nm = S.shape[1] dstep = cmod.CnstrMOD(xstep.Y, S, (Nc, Nm), opt['CMOD']) # Configure iteration statistics reporting if self.opt['AccurateDFid']: isxmap = {'XPrRsdl': 'PrimalRsdl', 'XDlRsdl': 'DualRsdl', 'XRho': 'Rho'} evlmap = {'ObjFun': 'ObjFun', 'DFid': 'DFid', 'RegL1': 'RegL1'} else: isxmap = {'ObjFun': 'ObjFun', 'DFid': 'DFid', 'RegL1': 'RegL1', 'XPrRsdl': 'PrimalRsdl', 'XDlRsdl': 'DualRsdl', 'XRho': 'Rho'} evlmap = {} isc = dictlrn.IterStatsConfig( isfld=['Iter', 'ObjFun', 'DFid', 'RegL1', 'Cnstr', 'XPrRsdl', 'XDlRsdl', 'XRho', 'DPrRsdl', 'DDlRsdl', 'DRho', 'Time'], isxmap=isxmap, isdmap={'Cnstr': 'Cnstr', 'DPrRsdl': 'PrimalRsdl', 'DDlRsdl': 'DualRsdl', 'DRho': 'Rho'}, evlmap=evlmap, hdrtxt=['Itn', 'Fnc', 'DFid', u('ℓ1'), 'Cnstr', 'r_X', 's_X', u('ρ_X'), 'r_D', 's_D', u('ρ_D')], hdrmap={'Itn': 'Iter', 'Fnc': 'ObjFun', 'DFid': 'DFid', u('ℓ1'): 'RegL1', 'Cnstr': 'Cnstr', 'r_X': 'XPrRsdl', 's_X': 'XDlRsdl', u('ρ_X'): 'XRho', 'r_D': 'DPrRsdl', 's_D': 'DDlRsdl', u('ρ_D'): 'DRho'} ) # Call parent constructor super(BPDNDictLearn, self).__init__(xstep, dstep, opt, isc)
'Verbose': True, 'MaxMainIter': 200, 'RelStopTol': 1e-3 }) b = bpdn.BPDN(D0, S, lmbda, opt) b.solve() print("BPDN solve time: %.2fs\n" % b.timer.elapsed('solve')) # Update dictionary for training set S opt = cmod.CnstrMOD.Options({ 'Verbose': True, 'MaxMainIter': 100, 'RelStopTol': 1e-3, 'rho': 4e2 }) c = cmod.CnstrMOD(b.Y, S, None, opt) c.solve() print("CMOD solve time: %.2fs" % c.timer.elapsed('solve')) # Display dictionaries D0 = D0.reshape(8, 8, D0.shape[-1]) D1 = c.Y.reshape((8, 8, c.Y.shape[-1])) fig1 = plot.figure(1, figsize=(20, 10)) plot.subplot(1, 2, 1) plot.imview(util.tiledict(D0), fgrf=fig1, title='D0') plot.subplot(1, 2, 2) plot.imview(util.tiledict(D1), fgrf=fig1, title='D1') fig1.show() # Plot functional value, residuals, and rho its = c.getitstat()
def gengraphs(pth): """ Generate call graph images when necessary. Parameter pth is the path to the directory in which images are to be created. """ srcmodflt = '^sporco.admm' srcqnmflt = r'^((?!<locals>|__new|_name_nested).)*$' dstqnmflt = r'^((?!<locals>|__new|_name_nested).)*$' fnmsub = ('^sporco.admm.', '') grpflt = r'^[^\.]*.[^\.]*' lnkpfx = '../../modules/' lnksub = (r'^([^\.]*).([^\.]*)(?:(.__init__|.__call__)|(.[^\.]*))', lnkpfx + r'sporco.admm.\1.html#sporco.admm.\1.\2\4') fntsz = 9 fntfm = 'Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans' kwargs = {'fntsz': fntsz, 'fntfm': fntfm, 'rmsz': True} ct = jonga.CallTracer(srcmodflt=srcmodflt, srcqnmflt=srcqnmflt, dstqnmflt=dstqnmflt, fnmsub=fnmsub, grpflt=grpflt, lnksub=lnksub) # Make destination directory if it doesn't exist if not os.path.exists(pth): os.makedirs(pth, exist_ok=True) import numpy as np np.random.seed(12345) #### bpdn module from sporco.admm import bpdn mdnm = 'sporco.admm.bpdn' D = np.random.randn(8, 16) s = np.random.randn(8, 1) lmbda = 0.1 ## BPDN class opt = bpdn.BPDN.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'bpdn_init.svg', **kwargs): b = bpdn.BPDN(D, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'bpdn_solve.svg', **kwargs): b.solve() ## BPDNJoint class opt = bpdn.BPDNJoint.Options({'Verbose': False, 'MaxMainIter': 1}) mu = 0.01 with CallGraph(ct, mdnm, pth, 'bpdnjnt_init.svg', **kwargs): b = bpdn.BPDNJoint(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'bpdnjnt_solve.svg', **kwargs): b.solve() ## ElasticNet class opt = bpdn.ElasticNet.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'elnet_init.svg', **kwargs): b = bpdn.ElasticNet(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'elnet_solve.svg', **kwargs): b.solve() # BPDNProjL1 class opt = bpdn.BPDNProjL1.Options({'Verbose': False, 'MaxMainIter': 1}) gamma = 2.0 with CallGraph(ct, mdnm, pth, 'bpdnprjl1_init.svg', **kwargs): b = bpdn.BPDNProjL1(D, s, gamma, opt) with CallGraph(ct, mdnm, pth, 'bpdnprjl1_solve.svg', **kwargs): b.solve() ## MinL1InL2Ball class opt = bpdn.MinL1InL2Ball.Options({'Verbose': False, 'MaxMainIter': 1}) epsilon = 1.0 with CallGraph(ct, mdnm, pth, 'bpdnml1l2_init.svg', **kwargs): b = bpdn.MinL1InL2Ball(D, s, epsilon, opt) with CallGraph(ct, mdnm, pth, 'bpdnml1l2_solve.svg', **kwargs): b.solve() #### cbpdn module from sporco.admm import cbpdn mdnm = 'sporco.admm.cbpdn' D = np.random.randn(4, 4, 16) s = np.random.randn(8, 8) lmbda = 0.1 ## ConvBPDN class opt = cbpdn.ConvBPDN.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cbpdn_init.svg', **kwargs): b = cbpdn.ConvBPDN(D, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'cbpdn_solve.svg', **kwargs): b.solve() ## ConvBPDNJoint class opt = cbpdn.ConvBPDNJoint.Options({'Verbose': False, 'MaxMainIter': 1}) mu = 0.01 with CallGraph(ct, mdnm, pth, 'cbpdnjnt_init.svg', **kwargs): b = cbpdn.ConvBPDNJoint(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnjnt_solve.svg', **kwargs): b.solve() ## ConvElasticNet class opt = cbpdn.ConvElasticNet.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'celnet_init.svg', **kwargs): b = cbpdn.ConvElasticNet(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'celnet_solve.svg', **kwargs): b.solve() ## ConvBPDNGradReg class opt = cbpdn.ConvBPDNGradReg.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cbpdngrd_init.svg', **kwargs): b = cbpdn.ConvBPDNGradReg(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdngrd_solve.svg', **kwargs): b.solve() ## ConvBPDNProjL1 class opt = cbpdn.ConvBPDNProjL1.Options({'Verbose': False, 'MaxMainIter': 1}) gamma = 0.5 with CallGraph(ct, mdnm, pth, 'cbpdnprjl1_init.svg', **kwargs): b = cbpdn.ConvBPDNProjL1(D, s, gamma, opt) with CallGraph(ct, mdnm, pth, 'cbpdnprjl1_solve.svg', **kwargs): b.solve() ## ConvMinL1InL2Ball class opt = cbpdn.ConvMinL1InL2Ball.Options({'Verbose': False, 'MaxMainIter': 1}) epsilon = 0.5 with CallGraph(ct, mdnm, pth, 'cbpdnml1l2_init.svg', **kwargs): b = cbpdn.ConvMinL1InL2Ball(D, s, epsilon, opt) with CallGraph(ct, mdnm, pth, 'cbpdnml1l2_solve.svg', **kwargs): b.solve() ## ConvBPDNMaskDcpl class opt = cbpdn.ConvBPDNMaskDcpl.Options({'Verbose': False, 'MaxMainIter': 1}) W = np.ones(s.shape) with CallGraph(ct, mdnm, pth, 'cbpdnmd_init.svg', **kwargs): b = cbpdn.ConvBPDNMaskDcpl(D, s, lmbda, W, opt) with CallGraph(ct, mdnm, pth, 'cbpdnmd_solve.svg', **kwargs): b.solve() ## ConvL1L1Grd class opt = cbpdn.ConvL1L1Grd.Options({'Verbose': False, 'MaxMainIter': 1}) mu = 1e-2 with CallGraph(ct, mdnm, pth, 'cl1l1grd_init.svg', **kwargs): b = cbpdn.ConvL1L1Grd(D, s, lmbda, mu, W, opt) with CallGraph(ct, mdnm, pth, 'cl1l1grd_solve.svg', **kwargs): b.solve() #### cbpdntv module from sporco.admm import cbpdntv mdnm = 'sporco.admm.cbpdntv' D = np.random.randn(4, 4, 16) s = np.random.randn(8, 8) lmbda = 0.1 mu = 0.01 ## ConvBPDNScalarTV class opt = cbpdntv.ConvBPDNScalarTV.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'cbpdnstv_init.svg', **kwargs): b = cbpdntv.ConvBPDNScalarTV(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnstv_solve.svg', **kwargs): b.solve() ## ConvBPDNVectorTV class opt = cbpdntv.ConvBPDNVectorTV.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'cbpdnvtv_init.svg', **kwargs): b = cbpdntv.ConvBPDNVectorTV(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnvtv_solve.svg', **kwargs): b.solve() ## ConvBPDNRecTV class opt = cbpdntv.ConvBPDNRecTV.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cbpdnrtv_init.svg', **kwargs): b = cbpdntv.ConvBPDNRecTV(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnrtv_solve.svg', **kwargs): b.solve() #### cbpdnin module from sporco.admm import cbpdnin mdnm = 'sporco.admm.cbpdnin' D = np.random.randn(4, 4, 32) s = np.random.randn(8, 8) lmbda = 0.1 mu = 0.01 Wg = np.append(np.eye(16), np.eye(16), axis=-1) ## ConvBPDNInhib class opt = cbpdnin.ConvBPDNInhib.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cbpdnin_init.svg', **kwargs): b = cbpdnin.ConvBPDNInhib(D, s, Wg, Whn=4, lmbda=lmbda, mu=mu, gamma=None, opt=opt) with CallGraph(ct, mdnm, pth, 'cbpdnin_solve.svg', **kwargs): b.solve() #### cmod module from sporco.admm import cmod mdnm = 'sporco.admm.cmod' X = np.random.randn(8, 16) S = np.random.randn(8, 16) ## CnstrMOD class opt = cmod.CnstrMOD.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cmod_init.svg', **kwargs): b = cmod.CnstrMOD(X, S, opt=opt) with CallGraph(ct, mdnm, pth, 'cmod_solve.svg', **kwargs): b.solve() #### ccmod module from sporco.admm import ccmod mdnm = 'sporco.admm.ccmod' X = np.random.randn(8, 8, 1, 2, 1) S = np.random.randn(8, 8, 2) dsz = (4, 4, 1) ## ConvCnstrMOD_IterSM class opt = ccmod.ConvCnstrMOD_IterSM.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodism_init.svg', **kwargs): b = ccmod.ConvCnstrMOD_IterSM(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodism_solve.svg', **kwargs): b.solve() ## ConvCnstrMOD_CG class opt = ccmod.ConvCnstrMOD_CG.Options({ 'Verbose': False, 'MaxMainIter': 1, 'CG': { 'MaxIter': 1 } }) with CallGraph(ct, mdnm, pth, 'ccmodcg_init.svg', **kwargs): b = ccmod.ConvCnstrMOD_CG(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodcg_solve.svg', **kwargs): b.solve() ## ConvCnstrMOD_Consensus class opt = ccmod.ConvCnstrMOD_Consensus.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodcnsns_init.svg', **kwargs): b = ccmod.ConvCnstrMOD_Consensus(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodcnsns_solve.svg', **kwargs): b.solve() #### ccmodmd module from sporco.admm import ccmodmd mdnm = 'sporco.admm.ccmodmd' X = np.random.randn(8, 8, 1, 2, 1) S = np.random.randn(8, 8, 2) W = np.array([1.0]) dsz = (4, 4, 1) ## ConvCnstrMODMaskDcpl_IterSM class opt = ccmodmd.ConvCnstrMODMaskDcpl_IterSM.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodmdism_init.svg', **kwargs): b = ccmodmd.ConvCnstrMODMaskDcpl_IterSM(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdism_solve.svg', **kwargs): b.solve() ## ConvCnstrMODMaskDcpl_CG class opt = ccmodmd.ConvCnstrMODMaskDcpl_CG.Options({ 'Verbose': False, 'MaxMainIter': 1, 'CG': { 'MaxIter': 1 } }) with CallGraph(ct, mdnm, pth, 'ccmodmdcg_init.svg', **kwargs): b = ccmodmd.ConvCnstrMODMaskDcpl_CG(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdcg_solve.svg', **kwargs): b.solve() ## ConvCnstrMODMaskDcpl_Consensus class opt = ccmodmd.ConvCnstrMODMaskDcpl_Consensus.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodmdcnsns_init.svg', **kwargs): b = ccmodmd.ConvCnstrMODMaskDcpl_Consensus(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdcnsns_solve.svg', **kwargs): b.solve() #### tvl1 module from sporco.admm import tvl1 mdnm = 'sporco.admm.tvl1' s = np.random.randn(16, 16) lmbda = 0.1 ## TVL1Denoise class opt = tvl1.TVL1Denoise.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'tvl1den_init.svg', **kwargs): b = tvl1.TVL1Denoise(s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl1den_solve.svg', **kwargs): b.solve() ## TVL1Deconv class opt = tvl1.TVL1Deconv.Options({'Verbose': False, 'MaxMainIter': 1}) h = np.random.randn(3, 3) with CallGraph(ct, mdnm, pth, 'tvl1dcn_init.svg', **kwargs): b = tvl1.TVL1Deconv(h, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl1dcn_solve.svg', **kwargs): b.solve() #### tvl2 module from sporco.admm import tvl2 mdnm = 'sporco.admm.tvl2' s = np.random.randn(16, 16) lmbda = 0.1 ## TVL2Denoise class opt = tvl2.TVL2Denoise.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'tvl2den_init.svg', **kwargs): b = tvl2.TVL2Denoise(s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl2den_solve.svg', **kwargs): b.solve() ## TVL2Deconv class opt = tvl2.TVL2Deconv.Options({'Verbose': False, 'MaxMainIter': 1}) h = np.random.randn(3, 3) with CallGraph(ct, mdnm, pth, 'tvl2dcn_init.svg', **kwargs): b = tvl2.TVL2Deconv(h, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl2dcn_solve.svg', **kwargs): b.solve() srcmodflt = '^sporco.fista' fnmsub = ('^sporco.fista.', '') lnksub = (r'^([^\.]*).([^\.]*)(?:(.__init__|.__call__)|(.[^\.]*))', lnkpfx + r'sporco.fista.\1.html#sporco.fista.\1.\2\4') ct = jonga.CallTracer(srcmodflt=srcmodflt, srcqnmflt=srcqnmflt, dstqnmflt=dstqnmflt, fnmsub=fnmsub, grpflt=grpflt, lnksub=lnksub) #### fista.cbpdn module from sporco.fista import cbpdn mdnm = 'sporco.fista.cbpdn' D = np.random.randn(4, 4, 16) s = np.random.randn(8, 8) lmbda = 0.1 ## ConvBPDN class opt = cbpdn.ConvBPDN.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'fista_cbpdn_init.svg', **kwargs): b = cbpdn.ConvBPDN(D, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'fista_cbpdn_solve.svg', **kwargs): b.solve() #### fista.ccmod module from sporco.fista import ccmod mdnm = 'sporco.fista.ccmod' X = np.random.randn(8, 8, 1, 2, 1) S = np.random.randn(8, 8, 2) dsz = (4, 4, 1) ## ConvCnstrMOD class opt = ccmod.ConvCnstrMOD.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'ccmodfista_init.svg', **kwargs): b = ccmod.ConvCnstrMOD(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodfista_solve.svg', **kwargs): b.solve() ## ConvCnstrMODMask class opt = ccmod.ConvCnstrMODMask.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'ccmodmdfista_init.svg', **kwargs): b = ccmod.ConvCnstrMODMask(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdfista_solve.svg', **kwargs): b.solve() srcmodflt = '^sporco.dictlrn' fnmsub = ('^sporco.dictlrn.', '') lnksub = (r'^([^\.]*).([^\.]*)(?:(.__init__|.__call__)|(.[^\.]*))', lnkpfx + r'sporco.dictlrn.\1.html#sporco.dictlrn.\1.\2\4') ct = jonga.CallTracer(srcmodflt=srcmodflt, srcqnmflt=srcqnmflt, dstqnmflt=dstqnmflt, fnmsub=fnmsub, grpflt=grpflt, lnksub=lnksub) #### bpdndl module from sporco.dictlrn import bpdndl mdnm = 'sporco.dictlrn.bpdndl' D0 = np.random.randn(8, 8) S = np.random.randn(8, 16) lmbda = 0.1 ## BPDNDictLearn class opt = bpdndl.BPDNDictLearn.Options({ 'Verbose': False, 'MaxMainIter': 1, 'AccurateDFid': True }) with CallGraph(ct, mdnm, pth, 'bpdndl_init.svg', **kwargs): b = bpdndl.BPDNDictLearn(D0, S, lmbda, opt) with CallGraph(ct, mdnm, pth, 'bpdndl_solve.svg', **kwargs): b.solve() #### cbpdndl module from sporco.dictlrn import cbpdndl mdnm = 'sporco.dictlrn.cbpdndl' D0 = np.random.randn(4, 4, 16) s = np.random.randn(8, 8, 10) lmbda = 0.1 ## ConvBPDNDictLearn class opt = cbpdndl.ConvBPDNDictLearn.Options({ 'Verbose': False, 'MaxMainIter': 1, 'AccurateDFid': True }) with CallGraph(ct, mdnm, pth, 'cbpdndl_init.svg', **kwargs): b = cbpdndl.ConvBPDNDictLearn(D0, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'cbpdndl_solve.svg', **kwargs): b.solve() #### cbpdndlmd module from sporco.dictlrn import cbpdndlmd mdnm = 'sporco.dictlrn.cbpdndlmd' ## ConvBPDNMaskDcplDictLearn class W = np.array([1.0]) opt = cbpdndlmd.ConvBPDNMaskDictLearn.Options({ 'Verbose': False, 'MaxMainIter': 1, 'AccurateDFid': True }) with CallGraph(ct, mdnm, pth, 'cbpdnmddl_init.svg', **kwargs): b = cbpdndlmd.ConvBPDNMaskDictLearn(D0, s, lmbda, W, opt) with CallGraph(ct, mdnm, pth, 'cbpdnmddl_solve.svg', **kwargs): b.solve()