""" Load a reference image. """ img = util.ExampleImages().image('monarch.png', zoom=0.5, scaled=True, gray=True, idxexp=np.s_[:, 160:672]) """ Create random mask and apply to reference image to obtain test image. (The call to ``numpy.random.seed`` ensures that the pseudo-random noise is reproducible.) """ np.random.seed(12345) frc = 0.5 msk = signal.rndmask(img.shape, frc, dtype=np.float32) imgw = msk * img """ Define pad and crop functions. """ pn = 8 spad = lambda x: np.pad(x, pn, mode='symmetric') zpad = lambda x: np.pad(x, pn, mode='constant') crop = lambda x: x[pn:-pn, pn:-pn] """ Construct padded mask and test image. """ mskp = zpad(msk) imgwp = spad(imgw)
S5 = exim.image('tulips.png', idxexp=np.s_[:, 30:542]) S = np.dstack((S1, S2, S3, S4, S5)) """ Highpass filter training images. """ npd = 16 fltlmbd = 5 sl, sh = signal.tikhonov_filter(S, fltlmbd, npd) """ Create random mask and apply to highpass filtered training image set. """ np.random.seed(12345) frc = 0.25 W = signal.rndmask(S.shape, frc, dtype=np.float32) shw = W * sh """ Construct initial dictionary. """ D0 = np.random.randn(8, 8, 32) """ Set regularization parameter and options for dictionary learning solver. """ lmbda = 0.1 opt = onlinecdl.OnlineConvBPDNMaskDictLearn.Options({ 'Verbose': True, 'ZeroMean': False, 'eta_a': 10.0,
def test_02(self): msk = signal.rndmask((16, 17), 0.25) assert msk.shape == (16, 17)
def test_03(self): msk = signal.rndmask((16, 17), 0.25, dtype=np.float32) assert msk.dtype == np.float32
exim = util.ExampleImages(scaled=True, zoom=0.25, gray=True) S1 = exim.image('barbara.png', idxexp=np.s_[10:522, 100:612]) S2 = exim.image('kodim23.png', idxexp=np.s_[:, 60:572]) S = np.dstack((S1, S2)) """ Construct initial dictionary. """ np.random.seed(12345) D0 = np.random.randn(8, 8, 32) """ Create random mask and apply to training images. """ frc = 0.5 W = signal.rndmask(S.shape[0:2] + (1, ), frc, dtype=np.float32) Sw = W * S """ $\ell_2$-TV denoising with a spatial mask as a non-linear lowpass filter. """ lmbda = 0.1 opt = tvl2.TVL2Denoise.Options({ 'Verbose': False, 'MaxMainIter': 200, 'DFidWeight': W, 'gEvalY': False, 'AutoRho': { 'Enabled': True } })