예제 #1
0
    def test_plot_allmodelruns(self):
        from spotpy.examples.spot_setup_hymod_python import spot_setup as sp
        sp = sp()

        sampler = spotpy.algorithms.dream(sp,
                                          parallel="seq",
                                          dbname='test_plot_allmodelruns',
                                          dbformat="ram",
                                          sim_timeout=5)

        sampler.sample(50)

        modelruns = []
        for run in sampler.getdata():
            on_run = []
            for i in run:
                on_run.append(i)
            on_run = np.array(on_run)[:-9]
            print(on_run)
            modelruns.append(on_run.tolist())

        test_plot_allmodelruns = spotpy.analyser.plot_allmodelruns(
            modelruns,
            sp.evaluation(),
            dates=range(1,
                        len(sp.evaluation()) + 1))

        fig_name = "bestmodel.png"

        # approximately 8855 KB is the size of an empty matplotlib.pyplot.plot, so
        # we expecting a plot with some content without testing the structure of the pot just
        # the size
        self.assertGreaterEqual(os.path.getsize(fig_name), 8855)

        os.remove(fig_name)
    fig = plt.figure(figsize=(16, 9))
    ax = plt.subplot(1, 1, 1)
    q5, q25, q75, q95 = [], [], [], []
    for field in fields:
        q5.append(np.percentile(results[field][-100:-1], 2.5))
        q95.append(np.percentile(results[field][-100:-1], 97.5))
    ax.plot(q5, color='dimgrey', linestyle='solid')
    ax.plot(q95, color='dimgrey', linestyle='solid')
    ax.fill_between(np.arange(0, len(q5), 1),
                    list(q5),
                    list(q95),
                    facecolor='dimgrey',
                    zorder=0,
                    linewidth=0,
                    label='parameter uncertainty')
    ax.plot(spot_setup.evaluation(), 'r.', label='data')
    ax.set_ylim(-50, 450)
    ax.set_xlim(0, 729)
    ax.legend()
    fig.savefig('python_hymod.png', dpi=300)
    #########################################################

    # Example plot to show the convergence #################
    fig = plt.figure(figsize=(12, 16))
    plt.subplot(2, 1, 1)
    for i in range(int(max(results['chain'])) + 1):
        index = np.where(results['chain'] == i)
        plt.plot(results['like1'][index], label='Chain ' + str(i + 1))

    plt.ylabel('Likelihood value')
    plt.legend()
예제 #3
0
 # Get fields with simulation data
 fields=[word for word in results.dtype.names if word.startswith('sim')]
 
 
 # Example plot to show remaining parameter uncertainty #
 fig= plt.figure(figsize=(9,6))
 ax = plt.subplot(1,1,1)
 q5,q25,q75,q95=[],[],[],[]
 for field in fields:
     q5.append(np.percentile(results[field][-100:-1],2.5))# ALl 100 runs after convergence
     q95.append(np.percentile(results[field][-100:-1],97.5))# ALl 100 runs after convergence
 ax.plot(q5,color='dimgrey',linestyle='solid')
 ax.plot(q95,color='dimgrey',linestyle='solid')
 ax.fill_between(np.arange(0,len(q5),1),list(q5),list(q95),facecolor='dimgrey',zorder=0,
                 linewidth=0,label='simulation uncertainty')  
 ax.plot(spot_setup.evaluation(),color='red', markersize=2,label='data')
 ax.set_ylim(-50,450)
 ax.set_xlim(0,729)
 ax.set_ylabel('Discharge [l s-1]')
 ax.set_xlabel('Days')
 ax.legend()
 fig.savefig('DREAM_simulation_uncertainty_Hymod.png',dpi=150)
 #########################################################
 
 
 # Example plot to show the convergence #################
 spotpy.analyser.plot_gelman_rubin(results, r_hat, fig_name='DREAM_r_hat.png')
 ########################################################
 
 
 
예제 #4
0
    plt.xlabel('Iteration')
    fig.savefig('SCEUA_objectivefunctiontrace.png', dpi=150)

    # Plot the best model run
    #Find the run_id with the minimal objective function value
    bestindex, bestobjf = spotpy.analyser.get_minlikeindex(results)

    # Select best model run
    best_model_run = results[bestindex]

    #Filter results for simulation results
    fields = [
        word for word in best_model_run.dtype.names if word.startswith('sim')
    ]
    best_simulation = list(best_model_run[fields])

    fig = plt.figure(figsize=(9, 6))
    ax = plt.subplot(1, 1, 1)
    ax.plot(best_simulation,
            color='black',
            linestyle='solid',
            label='Best objf.=' + str(bestobjf))
    ax.plot(spot_setup.evaluation(),
            'r.',
            markersize=3,
            label='Observation data')
    plt.xlabel('Number of Observation Points')
    plt.ylabel('Discharge [l s-1]')
    plt.legend(loc='upper right')
    fig.savefig('SCEUA_best_modelrun.png', dpi=150)