예제 #1
0
    def test_Poisson_t3(self):
        from context import spyfe
        from spyfe.meshing.generators.triangles import t3_ablock
        from spyfe.meshing.modification import mesh_boundary
        from spyfe.meshing.selection import connected_nodes
        from numpy import array
        from spyfe.materials.mat_heatdiff import MatHeatDiff
        from spyfe.femms.femm_heatdiff import FEMMHeatDiff
        from spyfe.fields.nodal_field import NodalField
        from spyfe.integ_rules import TriRule
        from spyfe.force_intensity import ForceIntensity
        from scipy.sparse.linalg import spsolve
        import time
        from spyfe.meshing.exporters.vtkexporter import vtkexport

        start0 = time.time()

        # These are the constants in the problem, k is kappa
        boundaryf = lambda x, y: 1.0 + x**2 + 2 * y**2
        Q = -6  # internal heat generation rate
        k = 1.0  # thermal conductivity
        m = MatHeatDiff(thermal_conductivity=array([[k, 0.0], [0.0, k]]))
        Dz = 1.0  # thickness of the slice
        start = time.time()
        N = 5
        Length, Width, nL, nW = 1.0, 1.0, N, N
        fens, fes = t3_ablock(Length, Width, nL, nW)
        print('Mesh generation', time.time() - start)
        bfes = mesh_boundary(fes)
        cn = connected_nodes(bfes)
        geom = NodalField(fens=fens)
        temp = NodalField(nfens=fens.count(), dim=1)
        for index in cn:
            temp.set_ebc([index],
                         val=boundaryf(fens.xyz[index, 0], fens.xyz[index, 1]))
        temp.apply_ebc()
        temp.numberdofs()
        femm = FEMMHeatDiff(material=m,
                            fes=fes,
                            integration_rule=TriRule(npts=1))
        start = time.time()
        fi = ForceIntensity(magn=lambda x, J: Q)
        F = femm.distrib_loads(geom, temp, fi, 3)
        print('Heat generation load', time.time() - start)
        start = time.time()
        F += femm.nz_ebc_loads_conductivity(geom, temp)
        print('NZ EBC load', time.time() - start)
        start = time.time()
        K = femm.conductivity(geom, temp)
        print('Matrix assembly', time.time() - start)
        start = time.time()
        temp.scatter_sysvec(spsolve(K, F))
        print('Solution', time.time() - start)
        print(temp.values)
        print('Done', time.time() - start0)
        from numpy.testing import assert_array_almost_equal
        assert_array_almost_equal(temp.values[-4:-1],
                                  array([[3.16], [3.36], [3.64]]))
예제 #2
0
k = 1.0  # thermal conductivity
m = MatHeatDiff(thermal_conductivity=k * numpy.identity(3))
start = time.time()
N = 4
xs = numpy.linspace(0.0, 1.0, N + 1)
ys = numpy.linspace(0.0, 1.0, N + 1)
zs = numpy.linspace(0.0, 1.0, N + 1)
fens, fes = h8_blockx(xs, ys, zs)
fens, fes = h8_to_h20(fens, fes)
fes.gradbfunpar(numpy.array([0, 0, 0]))
geom = NodalField(fens=fens)

vtkexport("Poisson_fe_H20_mesh", fes, geom)
print('Mesh generation', time.time() - start)
bfes = mesh_boundary(fes)
cn = connected_nodes(bfes)

temp = NodalField(nfens=fens.count(), dim=1)
for j in cn:
    temp.set_ebc([j],
                 val=boundaryf(fens.xyz[j, 0], fens.xyz[j, 1], fens.xyz[j, 2]))
temp.apply_ebc()
femm = FEMMHeatDiff(material=m,
                    fes=fes,
                    integration_rule=GaussRule(dim=3, order=3))
S = femm.connection_matrix(geom)
perm = reverse_cuthill_mckee(S, symmetric_mode=True)
temp.numberdofs(node_perm=perm)
# temp.numberdofs()
start = time.time()
fi = ForceIntensity(magn=lambda x, J: Q)
예제 #3
0
                  tolerance=0.99)
top = fe_select(fens,
                bfes,
                facing=True,
                direction=lambda x: numpy.array([0.0, +1.0]),
                tolerance=0.99)
topright = numpy.concatenate((top, right))
print('Mesh generation', time.time() - start)
model_data = {}
model_data['fens'] = fens
model_data['regions'] \
    = [{'femm': FEMMHeatDiff(material=m, fes=fes,
                             integration_rule=TriRule(npts=1))}
       ]
model_data['boundary_conditions'] \
    = {'essential': [{'node_list': connected_nodes(bfes.subset(bottom)),
                      'temperature': lambda x: 100.0
                      }],
       'surface_transfer': [{'femm': FEMMHeatDiffSurface(fes=bfes.subset(topright),
                                                         integration_rule=GaussRule(dim=1, order=1),
                                                         surface_transfer_coeff=lambda x: 750.0),
                             'ambient_temperature': lambda x: 0.0
                             }]
       }

# Call the solver
steady_state(model_data)
print(model_data['timings'])
nodeA = fenode_select(fens,
                      box=bounding_box([Width, Heightb]),
                      inflate=Width / 1e6)
예제 #4
0
k = 1.0  # thermal conductivity
m = MatHeatDiff(thermal_conductivity=numpy.array([[k, 0.0], [0.0, k]]))
start = time.time()
N = 50
Length, Width, nL, nW = 1.0, 1.0, N, N
fens, fes = t3_ablock(Length, Width, nL, nW)
fes.other_dimension = lambda conn, N, x: 1.0
print('Mesh generation', time.time() - start)
model_data = {}
model_data['fens'] = fens
model_data['regions'] = [{
    'femm':
    FEMMHeatDiff(material=m, fes=fes, integration_rule=TriRule(npts=1)),
    'heat_generation':
    ForceIntensity(magn=lambda x, J: -6.0)
}]
bfes = mesh_boundary(fes)
model_data['boundary_conditions'] = {
    'essential': [{
        'node_list': connected_nodes(bfes),
        'value': lambda x: 1.0 + x[0]**2 + 2 * x[1]**2
    }]
}

# Call the solver
steady_state(model_data)
for action, time in model_data['timings']:
    print(action, time, ' sec')

plot_temperature(model_data)
예제 #5
0
def steady_state(model_data):
    """Steady-state heat conduction solver.

    :param model_data: Model data dictionary.

    model_data['fens'] = finite element node set (mandatory)

    For each region (connected piece of the domain made of a particular material), mandatory:
    model_data['regions']= list of dictionaries, one for each region
        Each region:
        region['heat_generation'] = material internal heat generation rate (optional), function
        region['femm'] = finite element set that covers the region (mandatory)

    :return: Success?  True or false.  The model_data object is modified.
    model_data['geom'] =the nodal field that is the geometry
    model_data['temp'] =the nodal field that is the computed temperature
    model_data['timings'] = timing of the individual operations
    """

    # For essential boundary conditions (optional):
    # model_data.boundary_conditions.essential = cell array of struct,
    #           each piece of surface with essential boundary condition gets one
    #           element of the array with a struct with the attributes
    #     essential.temperature=fixed (prescribed) temperature (scalar),  or
    #           handle to a function with signature
    #               function T =f(x)
    #     essential.fes = finite element set on the boundary to which
    #                       the condition applies
    #               or alternatively
    #     essential.node_list = list of nodes on the boundary to which
    #                       the condition applies
    #               Only one of essential.fes and essential.node_list needs a given.
    #
    # For convection boundary conditions (optional):
    # model_data.boundary_conditions.convection = cell array of struct,
    #           each piece of surface with convection boundary condition gets one
    #           element of the array with a struct with the attributes
    #     convection.ambient_temperature=ambient temperature (scalar)
    #     convection.surface_transfer_coefficient  = surface heat transfer coefficient
    #     convection.fes = finite element set on the boundary to which
    #                       the condition applies
    #     convection.integration_rule= integration rule
    #
    # For flux boundary conditions (optional):
    # model_data.boundary_conditions.flux = cell array of struct,
    #           each piece of surface with flux boundary condition gets one
    #           element of the array with a struct with the attributes
    #     flux.normal_flux= normal flux component, positive when outward-bound (scalar)
    #     flux.fes = finite element set on the boundary to which
    #                       the condition applies
    #     flux.integration_rule= integration rule
    #
    # Control parameters:
    # model_data.renumber = true or false flag (default is true)
    # model_data.renumbering_method = optionally choose the renumbering
    #       method  (symrcm or symamd)

    # renumber = ~true; # Should we renumber?
    # if (isfield(model_data,'renumber'))
    #     renumber  =model_data.renumber;
    # end
    # Renumbering_options =struct( [] );
    #
    # # Should we renumber the nodes to minimize the cost of the solution of
    # # the coupled linear algebraic equations?
    # if (renumber)
    #     renumbering_method = 'symamd'; # default choice
    #     if ( isfield(model_data,'renumbering_method'))
    #         renumbering_method  =model_data.renumbering_method;;
    #     end
    #     # Run the renumbering algorithm
    #     model_data =renumber_mesh(model_data, renumbering_method);;
    #     # Save  the renumbering  (permutation of the nodes)
    #     clear  Renumbering_options; Renumbering_options.node_perm  =model_data.node_perm;
    # end

    timings = []

    task = 'Preliminaries'
    start = time.time()

    # Extract the nodes
    fens = model_data['fens']

    # Construct the geometry field
    geom = NodalField(fens=fens)

    # Construct the temperature field
    temp = NodalField(dim=1, nfens=geom.nfens)

    # Apply the essential boundary conditions on the temperature field
    if 'boundary_conditions' in model_data:
        if 'essential' in model_data['boundary_conditions']:
            ebcs = model_data['boundary_conditions']['essential']
            for ebc in ebcs:
                fenids = ebc['node_list']
                if 'temperature' not in ebc:
                    value = lambda xyz: 0.0
                else:
                    value = ebc['temperature']
                for index in fenids:
                    temp.set_ebc([index], val=value(fens.xyz[index, :]))
            temp.apply_ebc()

    # Number the equations
    temp.numberdofs()

    timings.append((task, time.time() - start))

    # Initialize the heat loads vector
    F = numpy.zeros((temp.nfreedofs, ))

    # #  Flux boundary condition:
    # if (isfield(model_data.boundary_conditions, 'flux' ))
    #     for j=1:length(model_data.boundary_conditions.flux)
    #         flux =model_data.boundary_conditions.flux{j};
    #         flux.femm = femm_heat_diffusion (struct (...
    #             'fes',flux.fes,...
    #             'integration_rule',flux.integration_rule));
    #         model_data.boundary_conditions.flux{j}=flux;
    #     end
    #     clear flux fi  femm
    # end
    #

    task = 'Conductivity matrix'
    start = time.time()

    # Construct the system conductivity matrix
    K = csr_matrix(
        (temp.nfreedofs, temp.nfreedofs))  # (all zeros, for the moment)
    for region in model_data['regions']:
        # Add up all the conductivity matrices for all the regions
        K += region['femm'].conductivity(geom, temp)

    timings.append((task, time.time() - start))

    task = 'Heat generation load'
    start = time.time()

    for region in model_data['regions']:
        Q = None  # default is no internal heat generation rate
        if 'heat_generation' in region:  # Was it defined?
            Q = region['heat_generation']
        if Q is not None:  # If it was supplied, and it is nonzero, compute its contribution.
            F = F + region['femm'].distrib_loads(geom, temp, Q, 3)

    timings.append((task, time.time() - start))

    task = 'NZEBC load'
    start = time.time()

    if 'boundary_conditions' in model_data:
        if 'essential' in model_data['boundary_conditions']:
            for region in model_data['regions']:
                # Loads due to the essential boundary conditions on the temperature field
                F += region['femm'].nz_ebc_loads_conductivity(geom, temp)

    timings.append((task, time.time() - start))

    # Convection boundary conditions:
    if 'boundary_conditions' in model_data:
        if 'surface_transfer' in model_data['boundary_conditions']:
            amb = NodalField(
                dim=1,
                nfens=geom.nfens)  # create the ambient temperature field
            sbcs = model_data['boundary_conditions']['surface_transfer']
            for sbc in sbcs:
                if 'ambient_temperature' not in sbc:
                    ambient_temperature = lambda xyz: 0.0
                else:
                    ambient_temperature = sbc['ambient_temperature']
                femm = sbc['femm']
                for index in connected_nodes(femm.fes):
                    amb.set_ebc([index],
                                val=ambient_temperature(fens.xyz[index, :]))
            amb.apply_ebc()
            for sbc in sbcs:
                femm = sbc['femm']
                K += femm.surface_transfer(geom, temp)
                F += femm.surface_transfer_loads(geom, temp, amb)
                F += femm.nz_ebc_loads_surface_transfer(geom, temp)

    # # Process the flux boundary condition
    # if (isfield(model_data.boundary_conditions, 'flux' ))
    #     for j=1:length(model_data.boundary_conditions.flux)
    #         flux =model_data.boundary_conditions.flux{j};
    #         fi= force_intensity(struct('magn',flux.normal_flux));
    #         # Note the sign  which reflects the formula (negative sign
    #         # in front of the integral)
    #         F = F - distrib_loads(flux.femm, sysvec_assembler, geom, temp, fi, 2);
    #     end
    #     clear flux fi
    # end

    task = 'System solution'
    start = time.time()

    # Solve for the temperatures
    temp.scatter_sysvec(spsolve(K, F))

    timings.append((task, time.time() - start))

    # Update the model data
    model_data['geom'] = geom
    model_data['temp'] = temp
    model_data['timings'] = timings
    return True