def test_retrieve_synaptic_block(self): default_config_paths = os.path.join( os.path.dirname(abstract_spinnaker_common.__file__), AbstractSpiNNakerCommon.CONFIG_FILE_NAME) config = conf_loader.load_config( AbstractSpiNNakerCommon.CONFIG_FILE_NAME, default_config_paths) key = 0 synaptic_manager = SynapticManager( synapse_type=None, ring_buffer_sigma=5.0, spikes_per_second=100.0, config=config, population_table_type=MockMasterPopulationTable( {key: [(1, 0, False)]}), synapse_io=MockSynapseIO()) transceiver = MockTransceiverRawData(bytearray(16)) placement = Placement(None, 0, 0, 1) first_block, row_len_1 = synaptic_manager._retrieve_synaptic_block( transceiver=transceiver, placement=placement, master_pop_table_address=0, indirect_synapses_address=0, direct_synapses_address=0, key=key, n_rows=1, index=0, using_extra_monitor_cores=False) same_block, row_len_1_2 = synaptic_manager._retrieve_synaptic_block( transceiver=transceiver, placement=placement, master_pop_table_address=0, indirect_synapses_address=0, direct_synapses_address=0, key=key, n_rows=1, index=0, using_extra_monitor_cores=False) synaptic_manager.clear_connection_cache() different_block, row_len_2 = synaptic_manager._retrieve_synaptic_block( transceiver=transceiver, placement=placement, master_pop_table_address=0, indirect_synapses_address=0, direct_synapses_address=0, key=key, n_rows=1, index=0, using_extra_monitor_cores=False) # Check that the row lengths are all the same assert row_len_1 == row_len_1_2 assert row_len_1 == row_len_2 # Check that the block retrieved twice without reset is cached assert id(first_block) == id(same_block) # Check that the block after reset is not a copy assert id(first_block) != id(different_block)
class AbstractPopulationVertex( ApplicationVertex, AbstractGeneratesDataSpecification, AbstractHasAssociatedBinary, AbstractContainsUnits, AbstractSpikeRecordable, AbstractNeuronRecordable, AbstractProvidesOutgoingPartitionConstraints, AbstractProvidesIncomingPartitionConstraints, AbstractPopulationInitializable, AbstractPopulationSettable, AbstractChangableAfterRun, AbstractHasGlobalMaxAtoms, AbstractRewritesDataSpecification, AbstractReadParametersBeforeSet, AbstractAcceptsIncomingSynapses, ProvidesKeyToAtomMappingImpl): """ Underlying vertex model for Neural Populations. """ __slots__ = [ "_additional_input", "_binary", "_buffer_size_before_receive", "_change_requires_mapping", "_change_requires_neuron_parameters_reload", "_incoming_spike_buffer_size", "_input_type", "_maximum_sdram_for_buffering", "_minimum_buffer_sdram", "_model_name", "_n_atoms", "_n_profile_samples", "_neuron_model", "_neuron_recorder", "_receive_buffer_host", "_receive_buffer_port", "_spike_recorder", "_synapse_manager", "_threshold_type", "_time_between_requests", "_units", "_using_auto_pause_and_resume" ] BASIC_MALLOC_USAGE = 2 # recording region ids SPIKE_RECORDING_REGION = 0 V_RECORDING_REGION = 1 GSYN_EXCITATORY_RECORDING_REGION = 2 GSYN_INHIBITORY_RECORDING_REGION = 3 RECORDING_REGION = {"spikes": 0, "v": 1, "gsyn_exc": 2, "gsyn_inh": 3} VARIABLE_LONG = { "spikes": "spikes", "v": "membrane voltage", "gsyn_exc": "gsyn_excitatory", "gsyn_inh": "gsyn_inhibitory" } N_RECORDING_REGIONS = 4 # the size of the runtime SDP port data region RUNTIME_SDP_PORT_SIZE = 4 # 6 elements before the start of global parameters BYTES_TILL_START_OF_GLOBAL_PARAMETERS = 24 _n_vertices = 0 non_pynn_default_parameters = { 'spikes_per_second': None, 'ring_buffer_sigma': None, 'incoming_spike_buffer_size': None, 'constraints': None, 'label': None } def __init__(self, n_neurons, binary, label, max_atoms_per_core, spikes_per_second, ring_buffer_sigma, incoming_spike_buffer_size, model_name, neuron_model, input_type, synapse_type, threshold_type, additional_input=None, constraints=None): # pylint: disable=too-many-arguments, too-many-locals super(AbstractPopulationVertex, self).__init__(label, constraints, max_atoms_per_core) self._units = { 'spikes': 'spikes', 'v': 'mV', 'gsyn_exc': "uS", 'gsyn_inh': "uS" } self._binary = binary self._n_atoms = n_neurons # buffer data self._incoming_spike_buffer_size = incoming_spike_buffer_size # get config from simulator config = globals_variables.get_simulator().config if incoming_spike_buffer_size is None: self._incoming_spike_buffer_size = config.getint( "Simulation", "incoming_spike_buffer_size") self._model_name = model_name self._neuron_model = neuron_model self._input_type = input_type self._threshold_type = threshold_type self._additional_input = additional_input # Set up for recording self._neuron_recorder = NeuronRecorder( ["spikes", "v", "gsyn_exc", "gsyn_inh"], n_neurons) self._time_between_requests = config.getint("Buffers", "time_between_requests") self._minimum_buffer_sdram = config.getint("Buffers", "minimum_buffer_sdram") self._using_auto_pause_and_resume = config.getboolean( "Buffers", "use_auto_pause_and_resume") self._receive_buffer_host = config.get("Buffers", "receive_buffer_host") self._receive_buffer_port = helpful_functions.read_config_int( config, "Buffers", "receive_buffer_port") # If live buffering is enabled, set a maximum on the buffer sizes spike_buffer_max_size = 0 v_buffer_max_size = 0 gsyn_buffer_max_size = 0 self._buffer_size_before_receive = None if config.getboolean("Buffers", "enable_buffered_recording"): spike_buffer_max_size = config.getint("Buffers", "spike_buffer_size") v_buffer_max_size = config.getint("Buffers", "v_buffer_size") gsyn_buffer_max_size = config.getint("Buffers", "gsyn_buffer_size") self._buffer_size_before_receive = config.getint( "Buffers", "buffer_size_before_receive") self._maximum_sdram_for_buffering = [ spike_buffer_max_size, v_buffer_max_size, gsyn_buffer_max_size, gsyn_buffer_max_size ] # Set up synapse handling self._synapse_manager = SynapticManager(synapse_type, ring_buffer_sigma, spikes_per_second, config) # bool for if state has changed. self._change_requires_mapping = True self._change_requires_neuron_parameters_reload = False # Set up for profiling self._n_profile_samples = helpful_functions.read_config_int( config, "Reports", "n_profile_samples") @property @overrides(ApplicationVertex.n_atoms) def n_atoms(self): return self._n_atoms @inject_items({ "graph": "MemoryApplicationGraph", "n_machine_time_steps": "TotalMachineTimeSteps", "machine_time_step": "MachineTimeStep" }) @overrides(ApplicationVertex.get_resources_used_by_atoms, additional_arguments={ "graph", "n_machine_time_steps", "machine_time_step" }) def get_resources_used_by_atoms(self, vertex_slice, graph, n_machine_time_steps, machine_time_step): # pylint: disable=arguments-differ # set resources required from this object container = ResourceContainer( sdram=SDRAMResource( self.get_sdram_usage_for_atoms(vertex_slice, graph, machine_time_step)), dtcm=DTCMResource(self.get_dtcm_usage_for_atoms(vertex_slice)), cpu_cycles=CPUCyclesPerTickResource( self.get_cpu_usage_for_atoms(vertex_slice))) recording_sizes = recording_utilities.get_recording_region_sizes( self._get_buffered_sdram(vertex_slice, n_machine_time_steps), self._minimum_buffer_sdram, self._maximum_sdram_for_buffering, self._using_auto_pause_and_resume) container.extend( recording_utilities.get_recording_resources( recording_sizes, self._receive_buffer_host, self._receive_buffer_port)) # return the total resources. return container @property @overrides(AbstractChangableAfterRun.requires_mapping) def requires_mapping(self): return self._change_requires_mapping @overrides(AbstractChangableAfterRun.mark_no_changes) def mark_no_changes(self): self._change_requires_mapping = False def _get_buffered_sdram_per_timestep(self, vertex_slice): return [ self._neuron_recorder.get_buffered_sdram_per_timestep( "spikes", vertex_slice), self._neuron_recorder.get_buffered_sdram_per_timestep( "v", vertex_slice), self._neuron_recorder.get_buffered_sdram_per_timestep( "gsyn_exc", vertex_slice), self._neuron_recorder.get_buffered_sdram_per_timestep( "gsyn_inh", vertex_slice) ] def _get_buffered_sdram(self, vertex_slice, n_machine_time_steps): return [ self._neuron_recorder.get_buffered_sdram("spikes", vertex_slice, n_machine_time_steps), self._neuron_recorder.get_buffered_sdram("v", vertex_slice, n_machine_time_steps), self._neuron_recorder.get_buffered_sdram("gsyn_exc", vertex_slice, n_machine_time_steps), self._neuron_recorder.get_buffered_sdram("gsyn_inh", vertex_slice, n_machine_time_steps) ] @inject_items({"n_machine_time_steps": "TotalMachineTimeSteps"}) @overrides(ApplicationVertex.create_machine_vertex, additional_arguments={"n_machine_time_steps"}) def create_machine_vertex(self, vertex_slice, resources_required, n_machine_time_steps, label=None, constraints=None): # pylint: disable=too-many-arguments, arguments-differ is_recording = len(self._neuron_recorder.recording_variables) > 0 buffered_sdram_per_timestep = self._get_buffered_sdram_per_timestep( vertex_slice) buffered_sdram = self._get_buffered_sdram(vertex_slice, n_machine_time_steps) minimum_buffer_sdram = recording_utilities.get_minimum_buffer_sdram( buffered_sdram, self._minimum_buffer_sdram) overflow_sdram = self._neuron_recorder.get_sampling_overflow_sdram( vertex_slice) vertex = PopulationMachineVertex(resources_required, is_recording, minimum_buffer_sdram, buffered_sdram_per_timestep, label, constraints, overflow_sdram) AbstractPopulationVertex._n_vertices += 1 # return machine vertex return vertex def get_cpu_usage_for_atoms(self, vertex_slice): per_neuron_cycles = ( _NEURON_BASE_N_CPU_CYCLES_PER_NEURON + self._neuron_model.get_n_cpu_cycles_per_neuron() + self._input_type.get_n_cpu_cycles_per_neuron( self._synapse_manager.synapse_type.get_n_synapse_types()) + self._threshold_type.get_n_cpu_cycles_per_neuron()) if self._additional_input is not None: per_neuron_cycles += \ self._additional_input.get_n_cpu_cycles_per_neuron() return (_NEURON_BASE_N_CPU_CYCLES + _C_MAIN_BASE_N_CPU_CYCLES + (per_neuron_cycles * vertex_slice.n_atoms) + self._neuron_recorder.get_n_cpu_cycles(vertex_slice.n_atoms) + self._synapse_manager.get_n_cpu_cycles()) def get_dtcm_usage_for_atoms(self, vertex_slice): per_neuron_usage = ( self._neuron_model.get_dtcm_usage_per_neuron_in_bytes() + self._input_type.get_dtcm_usage_per_neuron_in_bytes() + self._threshold_type.get_dtcm_usage_per_neuron_in_bytes()) if self._additional_input is not None: per_neuron_usage += \ self._additional_input.get_dtcm_usage_per_neuron_in_bytes() return (_NEURON_BASE_DTCM_USAGE_IN_BYTES + (per_neuron_usage * vertex_slice.n_atoms) + self._neuron_recorder.get_dtcm_usage_in_bytes(vertex_slice) + self._synapse_manager.get_dtcm_usage_in_bytes()) def _get_sdram_usage_for_neuron_params_per_neuron(self): per_neuron_usage = ( self._input_type.get_sdram_usage_per_neuron_in_bytes() + self._threshold_type.get_sdram_usage_per_neuron_in_bytes() + self._neuron_recorder.get_sdram_usage_per_neuron_in_bytes() + self._neuron_model.get_sdram_usage_per_neuron_in_bytes()) if self._additional_input is not None: per_neuron_usage += \ self._additional_input.get_sdram_usage_per_neuron_in_bytes() return per_neuron_usage def _get_sdram_usage_for_neuron_params(self, vertex_slice): """ calculates the sdram usage for just the neuron parameters region :param vertex_slice: the slice of atoms. :return: The sdram required for the neuron region """ per_neuron_usage = \ self._get_sdram_usage_for_neuron_params_per_neuron() return (self.BYTES_TILL_START_OF_GLOBAL_PARAMETERS + self._neuron_model. get_sdram_usage_for_global_parameters_in_bytes() + self._neuron_recorder. get_sdram_usage_for_global_parameters_in_bytes() + (per_neuron_usage * vertex_slice.n_atoms)) def get_sdram_usage_for_atoms(self, vertex_slice, graph, machine_time_step): sdram_requirement = ( common_constants.SYSTEM_BYTES_REQUIREMENT + self._get_sdram_usage_for_neuron_params(vertex_slice) + recording_utilities.get_recording_header_size( self.N_RECORDING_REGIONS) + PopulationMachineVertex.get_provenance_data_size( PopulationMachineVertex.N_ADDITIONAL_PROVENANCE_DATA_ITEMS) + self._synapse_manager.get_sdram_usage_in_bytes( vertex_slice, graph.get_edges_ending_at_vertex(self), machine_time_step) + (self._get_number_of_mallocs_used_by_dsg() * common_constants.SARK_PER_MALLOC_SDRAM_USAGE) + profile_utils.get_profile_region_size(self._n_profile_samples)) return sdram_requirement def _get_number_of_mallocs_used_by_dsg(self): extra_mallocs = len(self._neuron_recorder.recording_variables) return (self.BASIC_MALLOC_USAGE + self._synapse_manager.get_number_of_mallocs_used_by_dsg() + extra_mallocs) def _reserve_memory_regions(self, spec, vertex_slice, vertex): spec.comment("\nReserving memory space for data regions:\n\n") # Reserve memory: spec.reserve_memory_region( region=constants.POPULATION_BASED_REGIONS.SYSTEM.value, size=common_constants.SYSTEM_BYTES_REQUIREMENT, label='System') self._reserve_neuron_params_data_region(spec, vertex_slice) spec.reserve_memory_region( region=constants.POPULATION_BASED_REGIONS.RECORDING.value, size=recording_utilities.get_recording_header_size( self.N_RECORDING_REGIONS)) profile_utils.reserve_profile_region( spec, constants.POPULATION_BASED_REGIONS.PROFILING.value, self._n_profile_samples) vertex.reserve_provenance_data_region(spec) def _reserve_neuron_params_data_region(self, spec, vertex_slice): """ reserve the neuron parameter data region :param spec: the spec to write the dsg region to :param vertex_slice: the slice of atoms from the application vertex :return: None """ params_size = self._get_sdram_usage_for_neuron_params(vertex_slice) spec.reserve_memory_region( region=constants.POPULATION_BASED_REGIONS.NEURON_PARAMS.value, size=params_size, label='NeuronParams') def _write_neuron_parameters(self, spec, key, vertex_slice, machine_time_step, time_scale_factor): # pylint: disable=too-many-arguments n_atoms = (vertex_slice.hi_atom - vertex_slice.lo_atom) + 1 spec.comment( "\nWriting Neuron Parameters for {} Neurons:\n".format(n_atoms)) # Set the focus to the memory region 2 (neuron parameters): spec.switch_write_focus( region=constants.POPULATION_BASED_REGIONS.NEURON_PARAMS.value) # Write the random back off value spec.write_value( random.randint(0, AbstractPopulationVertex._n_vertices)) # Write the number of microseconds between sending spikes time_between_spikes = ((machine_time_step * time_scale_factor) / (n_atoms * 2.0)) spec.write_value(data=int(time_between_spikes)) # Write whether the key is to be used, and then the key, or 0 if it # isn't to be used if key is None: spec.write_value(data=0) spec.write_value(data=0) else: spec.write_value(data=1) spec.write_value(data=key) # Write the number of neurons in the block: spec.write_value(data=n_atoms) # Write the size of the incoming spike buffer spec.write_value(data=self._incoming_spike_buffer_size) # Write the recording rates and sizes record_globals = self._neuron_recorder.get_global_parameters( vertex_slice) for param in record_globals: spec.write_value(data=param.get_value(), data_type=param.get_dataspec_datatype()) # Write the index parameters indexes = self._neuron_recorder.get_index_parameters(vertex_slice) utility_calls.write_parameters_per_neuron(spec, vertex_slice, indexes, slice_paramaters=True) # Write the global parameters global_params = self._neuron_model.get_global_parameters() for param in global_params: spec.write_value(data=param.get_value(), data_type=param.get_dataspec_datatype()) # Write the neuron parameters utility_calls.write_parameters_per_neuron( spec, vertex_slice, self._neuron_model.get_neural_parameters()) # Write the input type parameters utility_calls.write_parameters_per_neuron( spec, vertex_slice, self._input_type.get_input_type_parameters()) # Write the additional input parameters if self._additional_input is not None: utility_calls.write_parameters_per_neuron( spec, vertex_slice, self._additional_input.get_parameters()) # Write the threshold type parameters utility_calls.write_parameters_per_neuron( spec, vertex_slice, self._threshold_type.get_threshold_parameters()) @inject_items({ "machine_time_step": "MachineTimeStep", "time_scale_factor": "TimeScaleFactor", "graph_mapper": "MemoryGraphMapper", "routing_info": "MemoryRoutingInfos" }) @overrides(AbstractRewritesDataSpecification.regenerate_data_specification, additional_arguments={ "machine_time_step", "time_scale_factor", "graph_mapper", "routing_info" }) def regenerate_data_specification(self, spec, placement, machine_time_step, time_scale_factor, graph_mapper, routing_info): # pylint: disable=too-many-arguments, arguments-differ vertex_slice = graph_mapper.get_slice(placement.vertex) # reserve the neuron parameters data region self._reserve_neuron_params_data_region( spec, graph_mapper.get_slice(placement.vertex)) # write the neuron params into the new dsg region self._write_neuron_parameters( key=routing_info.get_first_key_from_pre_vertex( placement.vertex, constants.SPIKE_PARTITION_ID), machine_time_step=machine_time_step, spec=spec, time_scale_factor=time_scale_factor, vertex_slice=vertex_slice) self._synapse_manager.regenerate_data_specification( spec, placement, machine_time_step, time_scale_factor, vertex_slice) # close spec spec.end_specification() @overrides(AbstractRewritesDataSpecification. requires_memory_regions_to_be_reloaded) def requires_memory_regions_to_be_reloaded(self): return self._change_requires_neuron_parameters_reload @overrides(AbstractRewritesDataSpecification.mark_regions_reloaded) def mark_regions_reloaded(self): self._change_requires_neuron_parameters_reload = False @inject_items({ "machine_time_step": "MachineTimeStep", "time_scale_factor": "TimeScaleFactor", "graph_mapper": "MemoryGraphMapper", "application_graph": "MemoryApplicationGraph", "machine_graph": "MemoryMachineGraph", "routing_info": "MemoryRoutingInfos", "tags": "MemoryTags", "n_machine_time_steps": "TotalMachineTimeSteps" }) @overrides(AbstractGeneratesDataSpecification.generate_data_specification, additional_arguments={ "machine_time_step", "time_scale_factor", "graph_mapper", "application_graph", "machine_graph", "routing_info", "tags", "n_machine_time_steps" }) def generate_data_specification(self, spec, placement, machine_time_step, time_scale_factor, graph_mapper, application_graph, machine_graph, routing_info, tags, n_machine_time_steps): # pylint: disable=too-many-arguments, arguments-differ vertex = placement.vertex spec.comment("\n*** Spec for block of {} neurons ***\n".format( self._model_name)) vertex_slice = graph_mapper.get_slice(vertex) # Reserve memory regions self._reserve_memory_regions(spec, vertex_slice, vertex) # Declare random number generators and distributions: # TODO add random distribution stuff # self.write_random_distribution_declarations(spec) # Get the key key = routing_info.get_first_key_from_pre_vertex( vertex, constants.SPIKE_PARTITION_ID) # Write the setup region spec.switch_write_focus( constants.POPULATION_BASED_REGIONS.SYSTEM.value) spec.write_array( simulation_utilities.get_simulation_header_array( self.get_binary_file_name(), machine_time_step, time_scale_factor)) # Write the recording region spec.switch_write_focus( constants.POPULATION_BASED_REGIONS.RECORDING.value) ip_tags = tags.get_ip_tags_for_vertex(vertex) recorded_region_sizes = recording_utilities.get_recorded_region_sizes( self._get_buffered_sdram(vertex_slice, n_machine_time_steps), self._maximum_sdram_for_buffering) spec.write_array( recording_utilities.get_recording_header_array( recorded_region_sizes, self._time_between_requests, self._buffer_size_before_receive, ip_tags)) # Write the neuron parameters self._write_neuron_parameters(spec, key, vertex_slice, machine_time_step, time_scale_factor) # write profile data profile_utils.write_profile_region_data( spec, constants.POPULATION_BASED_REGIONS.PROFILING.value, self._n_profile_samples) # allow the synaptic matrix to write its data spec-able data self._synapse_manager.write_data_spec(spec, self, vertex_slice, vertex, placement, machine_graph, application_graph, routing_info, graph_mapper, self._input_type, machine_time_step) # End the writing of this specification: spec.end_specification() @overrides(AbstractHasAssociatedBinary.get_binary_file_name) def get_binary_file_name(self): # Split binary name into title and extension binary_title, binary_extension = os.path.splitext(self._binary) # Reunite title and extension and return return (binary_title + self._synapse_manager.vertex_executable_suffix + binary_extension) @overrides(AbstractHasAssociatedBinary.get_binary_start_type) def get_binary_start_type(self): return ExecutableType.USES_SIMULATION_INTERFACE @overrides(AbstractSpikeRecordable.is_recording_spikes) def is_recording_spikes(self): return self._neuron_recorder.is_recording("spikes") @overrides(AbstractSpikeRecordable.set_recording_spikes) def set_recording_spikes(self, new_state=True, sampling_interval=None, indexes=None): self.set_recording("spikes", new_state, sampling_interval, indexes) @overrides(AbstractSpikeRecordable.get_spikes) def get_spikes(self, placements, graph_mapper, buffer_manager, machine_time_step): return self._neuron_recorder.get_spikes(self.label, buffer_manager, self.SPIKE_RECORDING_REGION, placements, graph_mapper, self, machine_time_step) @overrides(AbstractNeuronRecordable.get_recordable_variables) def get_recordable_variables(self): return self._neuron_recorder.get_recordable_variables() @overrides(AbstractNeuronRecordable.is_recording) def is_recording(self, variable): return self._neuron_recorder.is_recording(variable) @overrides(AbstractNeuronRecordable.set_recording) def set_recording(self, variable, new_state=True, sampling_interval=None, indexes=None): self._change_requires_mapping = not self.is_recording(variable) self._neuron_recorder.set_recording(variable, new_state, sampling_interval, indexes) @overrides(AbstractNeuronRecordable.get_data) def get_data(self, variable, n_machine_time_steps, placements, graph_mapper, buffer_manager, machine_time_step): # pylint: disable=too-many-arguments return self._neuron_recorder.get_matrix_data( self.label, buffer_manager, self.RECORDING_REGION[variable], placements, graph_mapper, self, variable, n_machine_time_steps) @overrides(AbstractNeuronRecordable.get_neuron_sampling_interval) def get_neuron_sampling_interval(self, variable): return self._neuron_recorder.get_neuron_sampling_interval(variable) @overrides(AbstractSpikeRecordable.get_spikes_sampling_interval) def get_spikes_sampling_interval(self): return self._neuron_recorder.get_neuron_sampling_interval("spikes") @overrides(AbstractPopulationInitializable.initialize) def initialize(self, variable, value): initialize_attr = getattr(self._neuron_model, "initialize_%s" % variable, None) if initialize_attr is None or not callable(initialize_attr): raise Exception("Vertex does not support initialisation of" " parameter {}".format(variable)) initialize_attr(value) self._change_requires_neuron_parameters_reload = True @property def input_type(self): return self._input_type @overrides(AbstractPopulationSettable.get_value) def get_value(self, key): """ Get a property of the overall model """ for obj in [ self._neuron_model, self._input_type, self._threshold_type, self._synapse_manager.synapse_type, self._additional_input, self ]: if hasattr(obj, key): return getattr(obj, key) raise Exception("Population {} does not have parameter {}".format( self._model_name, key)) @overrides(AbstractPopulationSettable.set_value) def set_value(self, key, value): """ Set a property of the overall model """ for obj in [ self._neuron_model, self._input_type, self._threshold_type, self._synapse_manager.synapse_type, self._additional_input ]: if hasattr(obj, key): setattr(obj, key, value) self._change_requires_neuron_parameters_reload = True return raise InvalidParameterType("Type {} does not have parameter {}".format( type(self), key)) @overrides(AbstractReadParametersBeforeSet.read_parameters_from_machine) def read_parameters_from_machine(self, transceiver, placement, vertex_slice): # locate sdram address to where the neuron parameters are stored neuron_region_sdram_address = \ helpful_functions.locate_memory_region_for_placement( placement, constants.POPULATION_BASED_REGIONS.NEURON_PARAMS.value, transceiver) # shift past the extra stuff before neuron parameters that we don't # need to read neuron_parameters_sdram_address = ( neuron_region_sdram_address + self.BYTES_TILL_START_OF_GLOBAL_PARAMETERS) # get size of neuron params size_of_region = self._get_sdram_usage_for_neuron_params(vertex_slice) size_of_region -= self.BYTES_TILL_START_OF_GLOBAL_PARAMETERS # get data from the machine byte_array = transceiver.read_memory(placement.x, placement.y, neuron_parameters_sdram_address, size_of_region) # Skip the recorder globals as these are not change on machione # Just written out in case data is changed and written back offset = self._neuron_recorder.get_size_of_global_parameters( vertex_slice) # update python neuron parameters with the data # handle global params (only once, so given a slice of 0 to 0) global_params, offset = utility_calls.translate_parameters( self._neuron_model.get_global_parameter_types(), byte_array, offset, Slice(0, 0)) self._neuron_model.set_global_parameters(global_params) # handle state params for a neuron neuron_params, offset = utility_calls.translate_parameters( self._neuron_model.get_neural_parameter_types(), byte_array, offset, vertex_slice) self._neuron_model.set_neural_parameters(neuron_params, vertex_slice) # handle input params input_params, offset = utility_calls.translate_parameters( self._input_type.get_input_type_parameter_types(), byte_array, offset, vertex_slice) self._input_type.set_input_type_parameters(input_params, vertex_slice) # handle additional input params, if they exist if self._additional_input is not None: additional_params, offset = utility_calls.translate_parameters( self._additional_input.get_parameter_types(), byte_array, offset, vertex_slice) self._additional_input.set_parameters(additional_params, vertex_slice) # handle threshold type params threshold_params, offset = utility_calls.translate_parameters( self._threshold_type.get_threshold_parameter_types(), byte_array, offset, vertex_slice) self._threshold_type.set_threshold_parameters(threshold_params, vertex_slice) # Read synapse parameters self._synapse_manager.read_parameters_from_machine( transceiver, placement, vertex_slice) @property def weight_scale(self): return self._input_type.get_global_weight_scale() @property def ring_buffer_sigma(self): return self._synapse_manager.ring_buffer_sigma @ring_buffer_sigma.setter def ring_buffer_sigma(self, ring_buffer_sigma): self._synapse_manager.ring_buffer_sigma = ring_buffer_sigma @property def spikes_per_second(self): return self._synapse_manager.spikes_per_second @spikes_per_second.setter def spikes_per_second(self, spikes_per_second): self._synapse_manager.spikes_per_second = spikes_per_second @property def synapse_dynamics(self): return self._synapse_manager.synapse_dynamics def set_synapse_dynamics(self, synapse_dynamics): self._synapse_manager.synapse_dynamics = synapse_dynamics def add_pre_run_connection_holder(self, connection_holder, edge, synapse_info): # pylint: disable=arguments-differ self._synapse_manager.add_pre_run_connection_holder( connection_holder, edge, synapse_info) @overrides(AbstractAcceptsIncomingSynapses.get_connections_from_machine) def get_connections_from_machine( self, transceiver, placement, edge, graph_mapper, routing_infos, synapse_information, machine_time_step, using_extra_monitor_cores, placements=None, data_receiver=None, sender_extra_monitor_core_placement=None, extra_monitor_cores_for_router_timeout=None, handle_time_out_configuration=True, fixed_routes=None): # pylint: disable=too-many-arguments return self._synapse_manager.get_connections_from_machine( transceiver, placement, edge, graph_mapper, routing_infos, synapse_information, machine_time_step, using_extra_monitor_cores, placements, data_receiver, sender_extra_monitor_core_placement, extra_monitor_cores_for_router_timeout, handle_time_out_configuration, fixed_routes) def clear_connection_cache(self): self._synapse_manager.clear_connection_cache() @property def synapse_type(self): return self._synapse_manager.synapse_type def get_maximum_delay_supported_in_ms(self, machine_time_step): return self._synapse_manager.get_maximum_delay_supported_in_ms( machine_time_step) @overrides(AbstractProvidesIncomingPartitionConstraints. get_incoming_partition_constraints) def get_incoming_partition_constraints(self, partition): """ Gets the constraints for partitions going into this vertex :param partition: partition that goes into this vertex :return: list of constraints """ return self._synapse_manager.get_incoming_partition_constraints() @overrides(AbstractProvidesOutgoingPartitionConstraints. get_outgoing_partition_constraints) def get_outgoing_partition_constraints(self, partition): """ Gets the constraints for partitions going out of this vertex :param partition: the partition that leaves this vertex :return: list of constraints """ return [ContiguousKeyRangeContraint()] @overrides(AbstractNeuronRecordable.clear_recording) def clear_recording(self, variable, buffer_manager, placements, graph_mapper): self._clear_recording_region(buffer_manager, placements, graph_mapper, self.RECORDING_REGION[variable]) @overrides(AbstractSpikeRecordable.clear_spike_recording) def clear_spike_recording(self, buffer_manager, placements, graph_mapper): self._clear_recording_region( buffer_manager, placements, graph_mapper, AbstractPopulationVertex.SPIKE_RECORDING_REGION) def _clear_recording_region(self, buffer_manager, placements, graph_mapper, recording_region_id): """ clears a recorded data region from the buffer manager :param buffer_manager: the buffer manager object :param placements: the placements object :param graph_mapper: the graph mapper object :param recording_region_id: the recorded region id for clearing :rtype: None """ machine_vertices = graph_mapper.get_machine_vertices(self) for machine_vertex in machine_vertices: placement = placements.get_placement_of_vertex(machine_vertex) buffer_manager.clear_recorded_data(placement.x, placement.y, placement.p, recording_region_id) @overrides(AbstractContainsUnits.get_units) def get_units(self, variable): # search the model components for the variable for obj in [ self._neuron_model, self._input_type, self._threshold_type, self._synapse_manager.synapse_type, self._additional_input ]: if (hasattr(obj, variable) and isinstance(obj, AbstractContainsUnits)): return obj.unit(variable) # if not in the components, must be within myself, so call my own units if variable in self._units: return self._units[variable] else: raise InvalidParameterType( "The parameter {} does not exist in this input " "conductance component".format(variable)) def describe(self): """ Returns a human-readable description of the cell or synapse type. The output may be customised by specifying a different template together with an associated template engine (see ``pyNN.descriptions``). If template is None, then a dictionary containing the template context will be returned. """ parameters = dict() for parameter_name in self.default_parameters: parameters[parameter_name] = self.get_value(parameter_name) context = { "name": self._model_name, "default_parameters": self.default_parameters, "default_initial_values": self.default_parameters, "parameters": parameters, } return context def __str__(self): return "{} with {} atoms".format(self.label, self.n_atoms) def __repr__(self): return self.__str__()
class SpiNNakEarApplicationVertex( ApplicationVertex, AbstractAcceptsIncomingSynapses, SimplePopulationSettable, HandOverToVertex, AbstractChangableAfterRun, AbstractSpikeRecordable, AbstractNeuronRecordable, AbstractControlsDestinationOfEdges, AbstractControlsSourceOfEdges, AbstractSendsOutgoingSynapses, AbstractCanReset, AbstractContainsUnits, AbstractApplicationSupportsAutoPauseAndResume, AbstractProvidesNKeysForPartition): __slots__ = [ # pynn model '_model', # bool flag for neuron param changes '_remapping_required', # ihcan vertices "_ihcan_vertices", # drnl vertices "_drnl_vertices", # final agg verts (outgoing atoms) "_final_agg_vertices", # storing synapse dynamics "_synapse_dynamics", # fibres per.... something "_n_fibres_per_ihc", # the seed for the inner hair fibre "_ihcan_fibre_random_seed", # the number of columns / rows for aggregation tree "_n_group_tree_rows", # the synaptic manager to manage projections into drnl verts. "__synapse_manager", # the number of drnls there are. "_n_dnrls", # the number of agg verts which are final aggregation verts. "_n_final_agg_groups", # the pole frequencies "_pole_freqs", # The timer period for the fast components "_timer_period" ] # NOTES IHC = inner hair cell # IHCan = inner hair channel # DRNL = middle ear filter # OME ear fluid # error message for frequency FREQUENCY_ERROR = ( "The input sampling frequency is too high for the chosen simulation " "time scale. Please reduce Fs or increase the time scale factor in " "the config file") # error message for get units GET_UNIT_ERROR = "do not know what to do with variable {} for get units" # error message if getting source outside aggregation verts PRE_SLICE_ERROR = ( "Why are you asking for a source outside of aggregation verts?!") # error message if getting destination verts outside drnls. POST_SLICE_ERROR = ( "why you asking for a destination atoms outside of the drnl verts!?") # error for processing plastic synapses PLASTIC_SYNAPSE_ERROR = ( "The SpiNNaear cannot handle plastic synapses at the moment, " "complain to the SpiNNaker software team if this is a problem.") # error message for being asked to clear recording of a param we dont know CLEAR_RECORDING_ERROR = "Spinnakear does not support recording of {}" # error message for set recording of a variable we dont know about RECORDING_ERROR = "Spinnakear does not support recording of {}" # error message for sampling interval SAMPLING_INTERVAL_ERROR = "do not know how to handle variable {}" # error message for incorrect neurons map N_NEURON_ERROR = ( "the number of neurons {} and the number of atoms {} do not match") # app edge mc partition id MC_APP_EDGE_PARTITION_ID = "internal_mc" # app edge sdram partition id SDRAM_APP_EDGE_PARTITION_ID = "internal_sdram" # green wood function from https://en.wikipedia.org/wiki/Greenwood_function # constant below and mapped to variable names # green wood constants for human cochlea hearing frequency mapping # A is a scaling constant between the characteristic frequency and the # upper frequency limit of the species GREEN_WOOD_HUMAN_CONSTANT_A = 165.4 # a is the slope of the straight-line portion of the frequency-position # curve, which has shown to be conserved throughout all investigated # species after scaling the length of the cochlea GREEN_WOOD_HUMAN_CONSTANT_ALPHA = 2.1 # K is a constant of integration that represents the divergence from the # log nature of the curve and is determined by the lower frequency # audible limit in the species. GREEN_WOOD_HUMAN_CONSTANT_K = 0.88 # n recording regions _N_POPULATION_RECORDING_REGIONS = 1 # random numbers _FINAL_ROW_N_ATOMS = 256 MAX_TIME_SCALE_FACTOR_RATIO = 22050 # flags for sorting out random fibres. might be a enum HSR_FLAG = 2 MSR_FLAG = 1 LSR_FLAG = 0 # how many synapse types this binary supports N_SYNAPSE_TYPES = 2 # these curve values are built from profiling the IHCAN cores to deduce # performance. CURVE_ONE = 18.12 CURVE_TWO = 10.99 # max audio frequency supported DEFAULT_MAX_AUDIO_FREQUENCY = 20000 # biggest number of neurons for the ear model FULL_EAR_HAIR_FIBERS = 30000.0 # min audio frequency supported DEFAULT_MIN_AUDIO_FREQUENCY = 30 def __init__(self, n_neurons, constraints, label, model, profile, time_scale_factor): # Superclasses ApplicationVertex.__init__(self, label, constraints) AbstractAcceptsIncomingSynapses.__init__(self) SimplePopulationSettable.__init__(self) HandOverToVertex.__init__(self) AbstractChangableAfterRun.__init__(self) AbstractSpikeRecordable.__init__(self) AbstractNeuronRecordable.__init__(self) AbstractProvidesNKeysForPartition.__init__(self) self._model = model self._profile = profile self._remapping_required = True self._synapse_dynamics = None self._n_fibres_per_ihc = None self._n_group_tree_rows = None self._ihcan_vertices = list() self._drnl_vertices = list() self._final_agg_vertices = list() self.__synapse_manager = SynapticManager( self.N_SYNAPSE_TYPES, None, None, globals_variables.get_simulator().config) # calculate n fibres per ihcan core sample_time = time_scale_factor / self._model.fs # how many channels self._n_channels = int(self.get_out_going_size() / self._model.n_fibres_per_ihc) # process pole freqs self._pole_freqs = self._process_pole_freqs() # how many fibres / atoms ran on each ihcan core self._n_fibres_per_ihcan_core = self.fibres_per_ihcan_core( sample_time, self._model.n_fibres_per_ihc) # process all the other internal numbers atoms_per_row = self.process_internal_numbers() # read in param file if needed self._process_param_file(atoms_per_row) # recording stuff self._drnl_neuron_recorder = NeuronRecorder( DRNLMachineVertex.RECORDABLES, DRNLMachineVertex.get_matrix_scalar_data_types(), DRNLMachineVertex.get_matrix_output_data_types(), self._n_dnrls) self._ihcan_neuron_recorder = NeuronRecorder( IHCANMachineVertex.RECORDABLES, IHCANMachineVertex.get_matrix_scalar_data_types(), IHCANMachineVertex.get_matrix_output_data_types(), self._n_dnrls * self._n_fibres_per_ihc) # bool for if state has changed. self._change_requires_mapping = True self._change_requires_neuron_parameters_reload = False self._change_requires_data_generation = False self._has_reset_last = True # safety check if self._n_atoms != n_neurons: raise ConfigurationException( self.N_NEURON_ERROR.format(n_neurons, self._n_atoms)) # safety stuff if (self._model.fs / time_scale_factor > self.MAX_TIME_SCALE_FACTOR_RATIO): raise Exception(self.FREQUENCY_ERROR) # write timer period self._timer_period = (MICRO_TO_SECOND_CONVERSION * (self._model.seq_size / self._model.fs)) @overrides(AbstractProvidesNKeysForPartition.get_n_keys_for_partition) def get_n_keys_for_partition(self, partition, graph_mapper): return partition.pre_vertex.get_n_keys_for_partition( partition, graph_mapper) @overrides(AbstractNeuronRecordable.get_expected_n_rows) def get_expected_n_rows(self, current_run_timesteps_map, sampling_rate, vertex, variable): if isinstance(vertex, DRNLMachineVertex): return int( (self._drnl_neuron_recorder.expected_rows_for_a_run_time( current_run_timesteps_map, vertex, sampling_rate)) * self._model.seq_size) else: return int( self._ihcan_neuron_recorder.expected_rows_for_a_run_time( current_run_timesteps_map, vertex, sampling_rate)) @staticmethod def fibres_per_ihcan_core(sample_time, n_fibres_per_ihc): # how many fibras / atoms ran on each ihcan core max_possible = abs( int( math.floor(((sample_time * MICRO_TO_SECOND_CONVERSION) - SpiNNakEarApplicationVertex.CURVE_ONE) / SpiNNakEarApplicationVertex.CURVE_TWO))) return min(n_fibres_per_ihc, max_possible, 2) @overrides(AbstractAcceptsIncomingSynapses.gen_on_machine) def gen_on_machine(self, vertex_slice): return self.__synapse_manager.gen_on_machine(vertex_slice) @overrides(AbstractApplicationSupportsAutoPauseAndResume. my_variable_local_time_period) def my_variable_local_time_period(self, default_machine_time_step, variable): if variable == DRNLMachineVertex.MOC: return default_machine_time_step else: return self._timer_period def reset_to_first_timestep(self): # Mark that reset has been done, and reload state variables self._has_reset_last = True self._change_requires_neuron_parameters_reload = False # If synapses change during the run, if self._synapse_manager.synapse_dynamics.changes_during_run: self._change_requires_data_generation = True def get_units(self, variable): if variable in DRNLMachineVertex.RECORDABLES: return DRNLMachineVertex.RECORDABLE_UNITS[variable] elif variable in IHCANMachineVertex.RECORDABLES: return IHCANMachineVertex.RECORDABLE_UNITS[variable] else: raise Exception(self.GET_UNIT_ERROR.format(variable)) def _process_param_file(self, atoms_per_row): if self._model.param_file is not None: try: pre_gen_vars = numpy.load(self._model.param_file) self._n_atoms = pre_gen_vars['n_atoms'] self._mv_index_list = pre_gen_vars['mv_index_list'] self._parent_index_list = pre_gen_vars['parent_index_list'] self._edge_index_list = pre_gen_vars['edge_index_list'] self._ihc_seeds = pre_gen_vars['ihc_seeds'] self._ome_indices = pre_gen_vars['ome_indices'] except Exception: self._n_atoms, self._n_dnrls, self._n_final_agg_groups = \ self.calculate_n_atoms_for_each_vertex_type( atoms_per_row, self._n_channels, self._model.n_fibres_per_ihc, self._model.seq_size) # save fixed param file self._save_pre_gen_vars(self._model.param_file) else: self._n_atoms, self._n_dnrls, self._n_final_agg_groups = \ self.calculate_n_atoms_for_each_vertex_type( atoms_per_row, self._n_channels, self._model.n_fibres_per_ihc, self._model.seq_size) def process_internal_numbers(self): # ear hair frequency bits in total per inner ear channel self._n_fibres_per_ihc = (self._model.n_lsr_per_ihc + self._model.n_msr_per_ihc + self._model.n_hsr_per_ihc) # number of columns needed for the aggregation tree atoms_per_row = self.calculate_atoms_per_row( self._n_channels, self._n_fibres_per_ihc, self._n_fibres_per_ihcan_core, self._model.max_input_to_aggregation_group) # if no rows, then just add 1 row with 1 vertex. if atoms_per_row == 0: self._n_group_tree_rows = 1 return self._n_fibres_per_ihcan_core else: # figure how many atoms per aggregation element per row max_n_atoms_per_group_tree_row = ( (self._model.max_input_to_aggregation_group**numpy.arange( 1, atoms_per_row + 1)) * self._n_fibres_per_ihcan_core) # filter rows max atoms so that its capped at 256 max_n_atoms_per_group_tree_row = \ max_n_atoms_per_group_tree_row[ max_n_atoms_per_group_tree_row <= min( self._FINAL_ROW_N_ATOMS, self._n_channels * self._n_fibres_per_ihc)] self._n_group_tree_rows = max_n_atoms_per_group_tree_row.size return atoms_per_row def _process_pole_freqs(self): if self._model.pole_freqs is None: if self._model.fs > 2 * self.DEFAULT_MAX_AUDIO_FREQUENCY: # use # the greenwood mapping pole_freqs = (numpy.flipud([ self.GREEN_WOOD_HUMAN_CONSTANT_A * (10**(self.GREEN_WOOD_HUMAN_CONSTANT_ALPHA * numpy.linspace([0], [1], self._n_channels)) - self.GREEN_WOOD_HUMAN_CONSTANT_K) ])) # don't want alias frequencies so we use a capped log scale map else: max_power = min([ numpy.log10(self.fs / 2.), numpy.log10(self.DEFAULT_MAX_AUDIO_FREQUENCY) ]) pole_freqs = numpy.flipud( numpy.logspace( numpy.log10(self.DEFAULT_MIN_AUDIO_FREQUENCY), max_power, self._n_channels)) else: pole_freqs = self._model.pole_freqs return pole_freqs[0] @overrides(AbstractSendsOutgoingSynapses.get_out_going_size) def get_out_going_size(self): return (int(self.FULL_EAR_HAIR_FIBERS * float(self._model.scale) / self._model.n_fibres_per_ihc) * self._model.n_fibres_per_ihc) @overrides(AbstractControlsSourceOfEdges.get_out_going_slices) def get_out_going_slices(self): slices = list() starter = 0 for agg_vertex in self._final_agg_vertices: slices.append(agg_vertex.connection_slice) starter += agg_vertex.n_atoms return slices @overrides(AbstractControlsDestinationOfEdges.get_in_coming_slices) def get_in_coming_slices(self): slices = list() starter = 0 for _ in self._drnl_vertices: slices.append(Slice(starter, starter)) starter += 1 return slices @overrides(AbstractControlsSourceOfEdges.get_pre_slice_for) def get_pre_slice_for(self, machine_vertex): if isinstance(machine_vertex, ANGroupMachineVertex): if machine_vertex.is_final_row: return machine_vertex.connection_slice raise Exception(self.PRE_SLICE_ERROR) @overrides(AbstractControlsDestinationOfEdges.get_post_slice_for) def get_post_slice_for(self, machine_vertex): if isinstance(machine_vertex, DRNLMachineVertex): return Slice(machine_vertex.drnl_index, machine_vertex.drnl_index) raise Exception(self.POST_SLICE_ERROR) @overrides(AbstractAcceptsIncomingSynapses.get_in_coming_size) def get_in_coming_size(self): return self._n_dnrls @overrides(AbstractAcceptsIncomingSynapses.get_synapse_id_by_target) def get_synapse_id_by_target(self, target): if target == "excitatory": return 0 elif target == "inhibitory": return 1 return None @overrides( AbstractControlsDestinationOfEdges.get_destinations_for_edge_from) def get_destinations_for_edge_from(self, app_edge, partition_id, graph_mapper, original_source_machine_vertex): if ((app_edge.pre_vertex != self and app_edge.post_vertex == self) and not isinstance(original_source_machine_vertex, OMEMachineVertex)): return self._drnl_vertices else: return [] @overrides(AbstractControlsSourceOfEdges.get_sources_for_edge_from) def get_sources_for_edge_from(self, app_edge, partition_id, graph_mapper, original_source_machine_vertex): if ((app_edge.pre_vertex == self and app_edge.post_vertex != self) and isinstance(original_source_machine_vertex, ANGroupMachineVertex) and original_source_machine_vertex.is_final_row): return [original_source_machine_vertex] else: return [] @overrides( AbstractAcceptsIncomingSynapses.get_maximum_delay_supported_in_ms) def get_maximum_delay_supported_in_ms(self, default_machine_time_step): return self.__synapse_manager.get_maximum_delay_supported_in_ms( default_machine_time_step) @overrides(AbstractAcceptsIncomingSynapses.add_pre_run_connection_holder) def add_pre_run_connection_holder(self, connection_holder, projection_edge, synapse_information): self.__synapse_manager.add_pre_run_connection_holder( connection_holder, projection_edge, synapse_information) def _save_pre_gen_vars(self, file_path): """ saves params into a numpy file. :param file_path: path to file to store stuff into :rtype: None """ numpy.savez_compressed(file_path, n_atoms=self._n_atoms, mv_index_list=self._mv_index_list, parent_index_list=self._parent_index_list, edge_index_list=self._edge_index_list, ihc_seeds=self._ihc_seeds, ome_indices=self._ome_indices) @overrides(AbstractAcceptsIncomingSynapses.set_synapse_dynamics) def set_synapse_dynamics(self, synapse_dynamics): if not isinstance(synapse_dynamics, SynapseDynamicsStatic): raise Exception(self.PLASTIC_SYNAPSE_ERROR) self._synapse_dynamics = synapse_dynamics @overrides(AbstractAcceptsIncomingSynapses.get_connections_from_machine) def get_connections_from_machine(self, transceiver, placement, edge, graph_mapper, routing_infos, synapse_information, local_time_step_map, using_extra_monitor_cores, placements=None, monitor_api=None, monitor_placement=None, monitor_cores=None, handle_time_out_configuration=True, fixed_routes=None): return self.__synapse_manager.get_connections_from_machine( transceiver, placement, edge, graph_mapper, routing_infos, synapse_information, local_time_step_map, using_extra_monitor_cores, DRNLMachineVertex.REGIONS.POPULATION_TABLE.value, DRNLMachineVertex.REGIONS.SYNAPTIC_MATRIX.value, DRNLMachineVertex.REGIONS.DIRECT_MATRIX.value, placements, monitor_api, monitor_placement, monitor_cores, handle_time_out_configuration, fixed_routes) @overrides(AbstractAcceptsIncomingSynapses.clear_connection_cache) def clear_connection_cache(self): self.__synapse_manager.clear_connection_cache() @overrides(SimplePopulationSettable.set_value) def set_value(self, key, value): SimplePopulationSettable.set_value(self, key, value) self._remapping_required = True def describe(self): """ Returns a human-readable description of the cell or synapse type. The output may be customised by specifying a different template\ together with an associated template engine\ (see ``pyNN.descriptions``). If template is None, then a dictionary containing the template\ context will be returned. """ parameters = dict() for parameter_name in self._model.default_parameters: parameters[parameter_name] = self.get_value(parameter_name) context = { "name": self._model.model_name, "default_parameters": self._model.default_parameters, "default_initial_values": self._model.default_parameters, "parameters": parameters, } return context @overrides(AbstractPopulationSettable.get_value) def get_value(self, key): if hasattr(self._model, key): return getattr(self._model, key) raise Exception("Population {} does not have parameter {}".format( self, key)) def _add_to_graph_components(self, machine_graph, graph_mapper, slice, vertex, resource_tracker): """ adds the vertex to all the graph components and resources :param machine_graph: machine graph :param graph_mapper: graph mapper :param slice: slice :param vertex: machien vertex :param resource_tracker: resource tracker :rtype: None """ machine_graph.add_vertex(vertex) graph_mapper.add_vertex_mapping(vertex, slice, self) resource_tracker.allocate_constrained_resources( vertex.resources_required, vertex.constraints) def _build_ome_vertex(self, machine_graph, graph_mapper, lo_atom, resource_tracker, timer_period): """ builds the ome vertex :param machine_graph: machine graph :param graph_mapper: graph mapper :param lo_atom: lo atom to put into graph mapper slice :param resource_tracker: the resource tracker :param timer_period: the timer period for all machine verts based on\ the ear vertex :return: the ome vertex and the new low atom """ # build the ome machine vertex ome_vertex = OMEMachineVertex(self._model.audio_input, self._model.fs, self._n_channels, self._model.seq_size, timer_period, self._profile) # allocate resources and updater graphs self._add_to_graph_components(machine_graph, graph_mapper, Slice(lo_atom, lo_atom), ome_vertex, resource_tracker) return ome_vertex, lo_atom + 1 def _build_drnl_verts(self, machine_graph, graph_mapper, new_low_atom, resource_tracker, ome_vertex, timer_period): """ build the drnl verts :param machine_graph: machine graph :param graph_mapper: graph mapper :param new_low_atom: the current low atom count for the graph mapper :param resource_tracker: the resource tracker for placement :param ome_vertex: the ome vertex to tie edges to :param timer_period: the timer period for all machine verts based on\ the ear vertex :return: new low atom count """ pole_index = 0 for _ in range(self._n_channels): drnl_vertex = DRNLMachineVertex( self._pole_freqs[pole_index], self._model.fs, ome_vertex.n_data_points, pole_index, self._profile, self._model.seq_size, self.__synapse_manager, self, self._model.n_buffers_in_sdram_total, self._drnl_neuron_recorder, timer_period) pole_index += 1 self._add_to_graph_components(machine_graph, graph_mapper, Slice(new_low_atom, new_low_atom), drnl_vertex, resource_tracker) new_low_atom += 1 self._drnl_vertices.append(drnl_vertex) return new_low_atom def _build_edges_between_ome_drnls(self, ome_vertex, machine_graph, app_edge, graph_mapper): """ adds edges between the ome and the drnl vertices :param ome_vertex: the ome vertex :param machine_graph: the machine graph :param app_edge: the app edge covering all these edges :param graph_mapper: the graph mapper :rtype: None """ for drnl_vert in self._drnl_vertices: edge = SpiNNakEarMachineEdge(ome_vertex, drnl_vert) machine_graph.add_edge(edge, ome_vertex.OME_PARTITION_ID) graph_mapper.add_edge_mapping(edge, app_edge) def _build_ihcan_vertices_and_sdram_edges(self, machine_graph, graph_mapper, new_low_atom, resource_tracker, app_edge, sdram_app_edge, timer_period): """ builds the ihcan verts and adds edges from drnl to them :param machine_graph: machine graph :param graph_mapper: the graph mapper :param new_low_atom: the lo atom sued to keep the graph mapper happy :param resource_tracker: the resource tracker for placement :param app_edge: the app edge to link all mc machine edges to :param sdram_app_edge: the application sdram edge between drnl and \ inchan to link all sdram machine edges to. :param timer_period: the timer period for all machine verts based on\ the ear vertex :return: iterable of ihcan verts """ ihcans = list() # generate ihc seeds n_ihcans = self._n_channels * self._model.n_fibres_per_ihc seed_index = 0 random_range = numpy.arange( n_ihcans * IHCANMachineVertex.N_SEEDS_PER_IHCAN_VERTEX, dtype=numpy.uint32) numpy.random.seed(self._model.ihc_seeds_seed) ihc_seeds = numpy.random.choice( random_range, int(n_ihcans * IHCANMachineVertex.N_SEEDS_PER_IHCAN_VERTEX), replace=False) ihcan_recording_index = 0 for drnl_vertex in self._drnl_vertices: machine_graph.add_outgoing_edge_partition( ConstantSDRAMMachinePartition( drnl_vertex.DRNL_SDRAM_PARTITION_ID, drnl_vertex, "sdram edge between drnl vertex {} and its " "IHCANS".format(drnl_vertex.drnl_index))) fibres = [] for _ in range(self._model.n_hsr_per_ihc): fibres.append(self.HSR_FLAG) for __ in range(self._model.n_msr_per_ihc): fibres.append(self.MSR_FLAG) for ___ in range(self._model.n_lsr_per_ihc): fibres.append(self.LSR_FLAG) random.seed(self._model.ihcan_fibre_random_seed) random.shuffle(fibres) for _ in range( int(self._model.n_fibres_per_ihc / self._n_fibres_per_ihcan_core)): # randomly pick fibre types chosen_indices = [ fibres.pop() for _ in range(self._n_fibres_per_ihcan_core) ] ihcan_slice = Slice( new_low_atom, new_low_atom + (self._n_fibres_per_ihcan_core * self._model.seq_size) - 1) ihcan_recording_slice = Slice( ihcan_recording_index, ihcan_recording_index + (self._n_fibres_per_ihcan_core * self._model.seq_size) - 1) ihcan_recording_index += ihcan_recording_slice.n_atoms vertex = IHCANMachineVertex( self._model.resample_factor, ihc_seeds[seed_index:seed_index + IHCANMachineVertex.N_SEEDS_PER_IHCAN_VERTEX], self._n_fibres_per_ihcan_core, self._model.ear_index, self._profile, self._model.fs, chosen_indices.count(self.LSR_FLAG), chosen_indices.count(self.MSR_FLAG), chosen_indices.count(self.HSR_FLAG), self._model.n_buffers_in_sdram_total, self._model.seq_size, self._ihcan_neuron_recorder, ihcan_recording_slice, timer_period) # update indexes new_low_atom += ihcan_slice.n_atoms seed_index += IHCANMachineVertex.N_SEEDS_PER_IHCAN_VERTEX # add to list of ihcans ihcans.append(vertex) self._add_to_graph_components(machine_graph, graph_mapper, ihcan_slice, vertex, resource_tracker) # multicast mc_edge = SpiNNakEarMachineEdge(drnl_vertex, vertex, EdgeTrafficType.MULTICAST) machine_graph.add_edge(mc_edge, drnl_vertex.DRNL_PARTITION_ID) graph_mapper.add_edge_mapping(mc_edge, app_edge) # sdram edge sdram_edge = SDRAMMachineEdge( drnl_vertex, vertex, drnl_vertex.sdram_edge_size, "sdram between {} and {}".format(drnl_vertex, vertex)) machine_graph.add_edge(sdram_edge, drnl_vertex.DRNL_SDRAM_PARTITION_ID) graph_mapper.add_edge_mapping(sdram_edge, sdram_app_edge) return ihcans, new_low_atom def _build_aggregation_group_vertices_and_edges(self, machine_graph, graph_mapper, new_low_atom, resource_tracker, app_edge): to_process = list() to_process.extend(self._ihcan_vertices) n_child_per_group = self._model.max_input_to_aggregation_group for row in range(self._n_group_tree_rows): aggregation_verts = list() n_row_angs = int( numpy.ceil(float(len(to_process)) / n_child_per_group)) for an in range(n_row_angs): final_row_lo_atom = 0 child_verts = to_process[an * n_child_per_group:an * n_child_per_group + n_child_per_group] # deduce n atoms of the ag node n_atoms = 0 for child in child_verts: n_atoms += child.n_atoms # build silce for an node an_slice = Slice(new_low_atom, new_low_atom + n_atoms - 1) new_low_atom += n_atoms # build vert final_row = row == self._n_group_tree_rows - 1 final_row_slice = None if final_row: final_row_slice = Slice(final_row_lo_atom, final_row_lo_atom + n_atoms) final_row_lo_atom += n_atoms ag_vertex = ANGroupMachineVertex(n_atoms, len(child_verts), final_row, row, self._model.ear_index, final_row_slice) # only store it in the agg array if its in the final row if final_row: self._final_agg_vertices.append(ag_vertex) # store for the next cycle aggregation_verts.append(ag_vertex) # update stuff self._add_to_graph_components(machine_graph, graph_mapper, an_slice, ag_vertex, resource_tracker) # add edges for child_vert in child_verts: # sort out partition id partition_id = IHCANMachineVertex.IHCAN_PARTITION_ID if isinstance(child_vert, ANGroupMachineVertex): partition_id = \ ANGroupMachineVertex.AN_GROUP_PARTITION_IDENTIFIER # add edge and mapping mc_edge = SpiNNakEarMachineEdge(child_vert, ag_vertex) machine_graph.add_edge(mc_edge, partition_id) graph_mapper.add_edge_mapping(mc_edge, app_edge) to_process = aggregation_verts @inject_items({"application_graph": "MemoryApplicationGraph"}) @overrides(HandOverToVertex.create_and_add_to_graphs_and_resources, additional_arguments={"application_graph"}) def create_and_add_to_graphs_and_resources(self, resource_tracker, machine_graph, graph_mapper, application_graph): mc_app_edge = ApplicationEdge(self, self) sdram_app_edge = ApplicationEdge(self, self, EdgeTrafficType.SDRAM) application_graph.add_edge(mc_app_edge, self.MC_APP_EDGE_PARTITION_ID) application_graph.add_edge(sdram_app_edge, self.SDRAM_APP_EDGE_PARTITION_ID) # atom tracker current_atom_count = 0 timer_period = (MICRO_TO_SECOND_CONVERSION * self._model.seq_size / self._model.fs) # ome vertex ome_vertex, current_atom_count = self._build_ome_vertex( machine_graph, graph_mapper, current_atom_count, resource_tracker, timer_period) # handle the drnl verts current_atom_count = self._build_drnl_verts(machine_graph, graph_mapper, current_atom_count, resource_tracker, ome_vertex, timer_period) # handle edges between ome and drnls self._build_edges_between_ome_drnls(ome_vertex, machine_graph, mc_app_edge, graph_mapper) # build the ihcan verts. self._ihcan_vertices, current_atom_count = ( self._build_ihcan_vertices_and_sdram_edges( machine_graph, graph_mapper, current_atom_count, resource_tracker, mc_app_edge, sdram_app_edge, timer_period)) # build aggregation group verts and edges self._build_aggregation_group_vertices_and_edges( machine_graph, graph_mapper, current_atom_count, resource_tracker, mc_app_edge) @property @overrides(ApplicationVertex.n_atoms) def n_atoms(self): return self._n_atoms @staticmethod def calculate_n_atoms_for_each_vertex_type(n_group_tree_rows, n_channels, n_ihc, seq_size): # ome atom n_atoms = 1 # dnrl atoms n_atoms += n_channels # ihcan atoms n_angs = n_channels * n_ihc n_atoms += (n_angs * seq_size) # an group atoms for row_index in range(n_group_tree_rows): n_atoms += n_angs return n_atoms, n_channels, n_angs @staticmethod def calculate_atoms_per_row(n_channels, n_fibres_per_ihc, n_fibres_per_ihcan, max_input_to_aggregation_group): return math.ceil( numpy.ceil( math.log((n_channels * n_fibres_per_ihc) / n_fibres_per_ihcan, max_input_to_aggregation_group))) @overrides(AbstractChangableAfterRun.mark_no_changes) def mark_no_changes(self): self._remapping_required = False @property @overrides(AbstractChangableAfterRun.requires_mapping) def requires_mapping(self): return self._remapping_required @overrides(AbstractSpikeRecordable.is_recording_spikes) def is_recording_spikes(self): return self._ihcan_neuron_recorder.is_recording( IHCANMachineVertex.SPIKES) @overrides(AbstractSpikeRecordable.get_spikes_sampling_interval) def get_spikes_sampling_interval(self, graph_mapper, local_time_period_map): if graph_mapper is None or local_time_period_map is None: return self.my_variable_local_time_period( get_simulator().default_machine_time_step, IHCANMachineVertex.SPIKES) return self._ihcan_neuron_recorder.get_neuron_sampling_interval( IHCANMachineVertex.SPIKES, self._ihcan_vertices[0], local_time_period_map) @overrides(AbstractSpikeRecordable.clear_spike_recording) def clear_spike_recording(self, buffer_manager, placements, graph_mapper): for ihcan_vertex in self._ihcan_vertices: placement = placements.get_placement_of_vertex(ihcan_vertex) buffer_manager.clear_recorded_data( placement.x, placement.y, placement.p, IHCANMachineVertex.SPIKE_RECORDING_REGION_ID) @overrides(AbstractSpikeRecordable.get_spikes) def get_spikes(self, placements, graph_mapper, buffer_manager, local_timer_period_map): return self._ihcan_neuron_recorder.get_spikes( self._label, buffer_manager, IHCANMachineVertex.RECORDING_REGIONS. SPIKE_RECORDING_REGION_ID.value, placements, graph_mapper, self, local_timer_period_map) @overrides(AbstractSpikeRecordable.set_recording_spikes) def set_recording_spikes(self, default_machine_time_step, new_state=True, sampling_interval=None, indexes=None): self.set_recording(IHCANMachineVertex.SPIKES, self._timer_period, new_state, sampling_interval, indexes) @overrides(AbstractNeuronRecordable.get_recordable_variables) def get_recordable_variables(self): recordables = list() # don't take the drnl spikes, as there's only 1 api for spikes, and the # drnl spikes are only there for the recording limitations recordables.append(DRNLMachineVertex.MOC) recordables.extend(IHCANMachineVertex.RECORDABLES) return recordables @overrides(AbstractSpikeRecordable.get_spike_machine_vertices) def get_spike_machine_vertices(self, graph_mapper): return self._ihcan_vertices @overrides(AbstractNeuronRecordable.get_machine_vertices_for) def get_machine_vertices_for(self, variable, graph_mapper): if variable == DRNLMachineVertex.MOC: return self._drnl_vertices else: return self._ihcan_vertices @overrides(AbstractNeuronRecordable.clear_recording) def clear_recording(self, variable, buffer_manager, placements, graph_mapper): if variable == DRNLMachineVertex.MOC: for drnl_vertex in self._drnl_vertices: placement = placements.get_placement_of_vertex(drnl_vertex) buffer_manager.clear_recorded_data( placement.x, placement.y, placement.p, DRNLMachineVertex.MOC_RECORDING_REGION_ID.value) if variable == self.SPIKES: for ihcan_vertex in self._ihcan_vertices: placement = placements.get_placement_of_vertex(ihcan_vertex) buffer_manager.clear_recorded_data( placement.x, placement.y, placement.p, (IHCANMachineVertex.RECORDING_REGIONS. SPIKE_RECORDING_REGION_ID.value)) if variable == self.SPIKE_PROB: for ihcan_vertex in self._ihcan_vertices: placement = placements.get_placement_of_vertex(ihcan_vertex) buffer_manager.clear_recorded_data( placement.x, placement.y, placement.p, (IHCANMachineVertex.RECORDING_REGIONS. SPIKE_PROBABILITY_REGION_ID.value)) else: raise ConfigurationException( self.CLEAR_RECORDING_ERROR.format(variable)) @overrides(AbstractNeuronRecordable.get_neuron_sampling_interval) def get_neuron_sampling_interval(self, variable, graph_mapper, local_time_period_map): if graph_mapper is None or local_time_period_map is None: return self.my_variable_local_time_period( get_simulator().default_machine_time_step, variable) if variable == DRNLMachineVertex.MOC: return self._drnl_neuron_recorder.get_neuron_sampling_interval( variable, self._drnl_vertices[0], local_time_period_map) elif variable in IHCANMachineVertex.RECORDABLES: return self._ihcan_neuron_recorder.get_neuron_sampling_interval( variable, self._ihcan_vertices[0], local_time_period_map) else: raise Exception(self.SAMPLING_INTERVAL_ERROR.format(variable)) @overrides(AbstractNeuronRecordable.set_recording) def set_recording(self, variable, default_machine_time_step, new_state=True, sampling_interval=None, indexes=None): self._change_requires_mapping = not self.is_recording(variable) if variable == DRNLMachineVertex.MOC: self._drnl_neuron_recorder.set_recording( variable, sampling_interval, indexes, self, default_machine_time_step, new_state) elif variable in IHCANMachineVertex.RECORDABLES: self._ihcan_neuron_recorder.set_recording( variable, sampling_interval, indexes, self, default_machine_time_step, new_state) else: raise ConfigurationException(self.RECORDING_ERROR.format(variable)) @overrides(AbstractNeuronRecordable.is_recording) def is_recording(self, variable): if variable == DRNLMachineVertex.MOC: return self._drnl_neuron_recorder.is_recording(variable) elif variable in IHCANMachineVertex.RECORDABLES: return self._ihcan_neuron_recorder.is_recording(variable) else: raise ConfigurationException(self.RECORDING_ERROR.format(variable)) @overrides(AbstractNeuronRecordable.get_recording_slice) def get_recording_slice(self, graph_mapper, vertex): return vertex.recorded_slice() @overrides(AbstractNeuronRecordable.get_data) def get_data(self, variable, run_time, placements, graph_mapper, buffer_manager, local_time_period_map): if variable == DRNLMachineVertex.MOC: return self._drnl_neuron_recorder.get_matrix_data( self._label, buffer_manager, DRNLMachineVertex.MOC_RECORDABLE_REGION_ID, placements, graph_mapper, self, variable, run_time, local_time_period_map) elif variable == IHCANMachineVertex.SPIKE_PROB: matrix_data = self._ihcan_neuron_recorder.get_matrix_data( self._label, buffer_manager, IHCANMachineVertex. RECORDING_REGIONS.SPIKE_PROBABILITY_REGION_ID.value, placements, graph_mapper, self, variable, run_time, local_time_period_map) # convert to n fibers per time step. new_matrix_data = list() for element in matrix_data[0]: seq_elements = list() for seq_index in range(0, self._model.seq_size): seq_elements.append( element[0 + seq_index::self._model.seq_size]) for time_step in seq_elements: new_matrix_data.append(time_step) return new_matrix_data, matrix_data[1][0:10], matrix_data[2] elif variable == IHCANMachineVertex.SPIKES: return self._ihcan_neuron_recorder.get_spikes( self._label, buffer_manager, IHCANMachineVertex. RECORDING_REGIONS.SPIKE_RECORDING_REGION_ID.value, placements, graph_mapper, self, run_time) else: raise ConfigurationException(self.RECORDING_ERROR.format(variable)) def get_sampling_interval(self, sample_size_window): return ((self._timer_period * sample_size_window) * MICRO_TO_SECOND_CONVERSION)
class AbstractPopulationVertex( ApplicationVertex, AbstractGeneratesDataSpecification, AbstractHasAssociatedBinary, AbstractContainsUnits, AbstractSpikeRecordable, AbstractNeuronRecordable, AbstractProvidesOutgoingPartitionConstraints, AbstractProvidesIncomingPartitionConstraints, AbstractPopulationInitializable, AbstractPopulationSettable, AbstractChangableAfterRun, AbstractRewritesDataSpecification, AbstractReadParametersBeforeSet, AbstractAcceptsIncomingSynapses, ProvidesKeyToAtomMappingImpl): """ Underlying vertex model for Neural Populations. """ __slots__ = [ "_buffer_size_before_receive", "_change_requires_mapping", "_change_requires_neuron_parameters_reload", "_incoming_spike_buffer_size", "_maximum_sdram_for_buffering", "_minimum_buffer_sdram", "_n_atoms", "_n_profile_samples", "_neuron_impl", "_neuron_recorder", "_parameters", "_pynn_model", "_receive_buffer_host", "_receive_buffer_port", "_state_variables", "_synapse_manager", "_time_between_requests", "_units", "_using_auto_pause_and_resume" ] BASIC_MALLOC_USAGE = 2 # recording region IDs SPIKE_RECORDING_REGION = 0 # the size of the runtime SDP port data region RUNTIME_SDP_PORT_SIZE = 4 # 8 elements before the start of global parameters BYTES_TILL_START_OF_GLOBAL_PARAMETERS = 32 _n_vertices = 0 def __init__(self, n_neurons, label, constraints, max_atoms_per_core, spikes_per_second, ring_buffer_sigma, incoming_spike_buffer_size, neuron_impl, pynn_model): # pylint: disable=too-many-arguments, too-many-locals super(AbstractPopulationVertex, self).__init__(label, constraints, max_atoms_per_core) self._n_atoms = n_neurons # buffer data self._incoming_spike_buffer_size = incoming_spike_buffer_size # get config from simulator config = globals_variables.get_simulator().config if incoming_spike_buffer_size is None: self._incoming_spike_buffer_size = config.getint( "Simulation", "incoming_spike_buffer_size") self._neuron_impl = neuron_impl self._pynn_model = pynn_model self._parameters = SpynnakerRangeDictionary(n_neurons) self._state_variables = SpynnakerRangeDictionary(n_neurons) self._neuron_impl.add_parameters(self._parameters) self._neuron_impl.add_state_variables(self._state_variables) # Set up for recording recordables = ["spikes"] recordables.extend(self._neuron_impl.get_recordable_variables()) self._neuron_recorder = NeuronRecorder(recordables, n_neurons) self._time_between_requests = config.getint("Buffers", "time_between_requests") self._minimum_buffer_sdram = config.getint("Buffers", "minimum_buffer_sdram") self._using_auto_pause_and_resume = config.getboolean( "Buffers", "use_auto_pause_and_resume") self._receive_buffer_host = config.get("Buffers", "receive_buffer_host") self._receive_buffer_port = helpful_functions.read_config_int( config, "Buffers", "receive_buffer_port") # If live buffering is enabled, set a maximum on the buffer sizes spike_buffer_max_size = 0 variable_buffer_max_size = 0 self._buffer_size_before_receive = None if config.getboolean("Buffers", "enable_buffered_recording"): spike_buffer_max_size = config.getint("Buffers", "spike_buffer_size") variable_buffer_max_size = config.getint("Buffers", "variable_buffer_size") self._maximum_sdram_for_buffering = [spike_buffer_max_size] for _ in self._neuron_impl.get_recordable_variables(): self._maximum_sdram_for_buffering.append(variable_buffer_max_size) # Set up synapse handling self._synapse_manager = SynapticManager( self._neuron_impl.get_n_synapse_types(), ring_buffer_sigma, spikes_per_second, config) # bool for if state has changed. self._change_requires_mapping = True self._change_requires_neuron_parameters_reload = False # Set up for profiling self._n_profile_samples = helpful_functions.read_config_int( config, "Reports", "n_profile_samples") @property @overrides(ApplicationVertex.n_atoms) def n_atoms(self): return self._n_atoms @inject_items({ "graph": "MemoryApplicationGraph", "n_machine_time_steps": "TotalMachineTimeSteps", "machine_time_step": "MachineTimeStep" }) @overrides(ApplicationVertex.get_resources_used_by_atoms, additional_arguments={ "graph", "n_machine_time_steps", "machine_time_step" }) def get_resources_used_by_atoms(self, vertex_slice, graph, n_machine_time_steps, machine_time_step): # pylint: disable=arguments-differ # set resources required from this object container = ResourceContainer( sdram=SDRAMResource( self.get_sdram_usage_for_atoms(vertex_slice, graph, machine_time_step)), dtcm=DTCMResource(self.get_dtcm_usage_for_atoms(vertex_slice)), cpu_cycles=CPUCyclesPerTickResource( self.get_cpu_usage_for_atoms(vertex_slice))) recording_sizes = recording_utilities.get_recording_region_sizes( self._get_buffered_sdram(vertex_slice, n_machine_time_steps), self._minimum_buffer_sdram, self._maximum_sdram_for_buffering, self._using_auto_pause_and_resume) container.extend( recording_utilities.get_recording_resources( recording_sizes, self._receive_buffer_host, self._receive_buffer_port)) # return the total resources. return container @property @overrides(AbstractChangableAfterRun.requires_mapping) def requires_mapping(self): return self._change_requires_mapping @overrides(AbstractChangableAfterRun.mark_no_changes) def mark_no_changes(self): self._change_requires_mapping = False def _get_buffered_sdram_per_timestep(self, vertex_slice): values = [ self._neuron_recorder.get_buffered_sdram_per_timestep( "spikes", vertex_slice) ] for variable in self._neuron_impl.get_recordable_variables(): values.append( self._neuron_recorder.get_buffered_sdram_per_timestep( variable, vertex_slice)) return values def _get_buffered_sdram(self, vertex_slice, n_machine_time_steps): values = [ self._neuron_recorder.get_buffered_sdram("spikes", vertex_slice, n_machine_time_steps) ] for variable in self._neuron_impl.get_recordable_variables(): values.append( self._neuron_recorder.get_buffered_sdram( variable, vertex_slice, n_machine_time_steps)) return values @inject_items({"n_machine_time_steps": "TotalMachineTimeSteps"}) @overrides(ApplicationVertex.create_machine_vertex, additional_arguments={"n_machine_time_steps"}) def create_machine_vertex(self, vertex_slice, resources_required, n_machine_time_steps, label=None, constraints=None): # pylint: disable=too-many-arguments, arguments-differ is_recording = len(self._neuron_recorder.recording_variables) > 0 buffered_sdram_per_timestep = self._get_buffered_sdram_per_timestep( vertex_slice) buffered_sdram = self._get_buffered_sdram(vertex_slice, n_machine_time_steps) minimum_buffer_sdram = recording_utilities.get_minimum_buffer_sdram( buffered_sdram, self._minimum_buffer_sdram) overflow_sdram = self._neuron_recorder.get_sampling_overflow_sdram( vertex_slice) vertex = PopulationMachineVertex(resources_required, is_recording, minimum_buffer_sdram, buffered_sdram_per_timestep, label, constraints, overflow_sdram) AbstractPopulationVertex._n_vertices += 1 # return machine vertex return vertex def get_cpu_usage_for_atoms(self, vertex_slice): return (_NEURON_BASE_N_CPU_CYCLES + _C_MAIN_BASE_N_CPU_CYCLES + (_NEURON_BASE_N_CPU_CYCLES_PER_NEURON * vertex_slice.n_atoms) + self._neuron_recorder.get_n_cpu_cycles(vertex_slice.n_atoms) + self._neuron_impl.get_n_cpu_cycles(vertex_slice.n_atoms) + self._synapse_manager.get_n_cpu_cycles()) def get_dtcm_usage_for_atoms(self, vertex_slice): return ( _NEURON_BASE_DTCM_USAGE_IN_BYTES + self._neuron_impl.get_dtcm_usage_in_bytes(vertex_slice.n_atoms) + self._neuron_recorder.get_dtcm_usage_in_bytes(vertex_slice) + self._synapse_manager.get_dtcm_usage_in_bytes()) def _get_sdram_usage_for_neuron_params(self, vertex_slice): """ Calculate the SDRAM usage for just the neuron parameters region. :param vertex_slice: the slice of atoms. :return: The SDRAM required for the neuron region """ return ( self.BYTES_TILL_START_OF_GLOBAL_PARAMETERS + self._neuron_recorder.get_sdram_usage_in_bytes(vertex_slice) + self._neuron_impl.get_sdram_usage_in_bytes(vertex_slice.n_atoms)) def get_sdram_usage_for_atoms(self, vertex_slice, graph, machine_time_step): sdram_requirement = ( common_constants.SYSTEM_BYTES_REQUIREMENT + self._get_sdram_usage_for_neuron_params(vertex_slice) + recording_utilities.get_recording_header_size( len(self._neuron_impl.get_recordable_variables()) + 1) + PopulationMachineVertex.get_provenance_data_size( PopulationMachineVertex.N_ADDITIONAL_PROVENANCE_DATA_ITEMS) + self._synapse_manager.get_sdram_usage_in_bytes( vertex_slice, graph.get_edges_ending_at_vertex(self), machine_time_step) + (self._get_number_of_mallocs_used_by_dsg() * common_constants.SARK_PER_MALLOC_SDRAM_USAGE) + profile_utils.get_profile_region_size(self._n_profile_samples)) return sdram_requirement def _get_number_of_mallocs_used_by_dsg(self): extra_mallocs = len(self._neuron_recorder.recording_variables) return (self.BASIC_MALLOC_USAGE + self._synapse_manager.get_number_of_mallocs_used_by_dsg() + extra_mallocs) def _reserve_memory_regions(self, spec, vertex_slice, vertex): spec.comment("\nReserving memory space for data regions:\n\n") # Reserve memory: spec.reserve_memory_region( region=constants.POPULATION_BASED_REGIONS.SYSTEM.value, size=common_constants.SYSTEM_BYTES_REQUIREMENT, label='System') self._reserve_neuron_params_data_region(spec, vertex_slice) spec.reserve_memory_region( region=constants.POPULATION_BASED_REGIONS.RECORDING.value, size=recording_utilities.get_recording_header_size( len(self._neuron_impl.get_recordable_variables()) + 1)) profile_utils.reserve_profile_region( spec, constants.POPULATION_BASED_REGIONS.PROFILING.value, self._n_profile_samples) vertex.reserve_provenance_data_region(spec) def _reserve_neuron_params_data_region(self, spec, vertex_slice): """ Reserve the neuron parameter data region. :param spec: the spec to write the DSG region to :param vertex_slice: the slice of atoms from the application vertex :return: None """ params_size = self._get_sdram_usage_for_neuron_params(vertex_slice) spec.reserve_memory_region( region=constants.POPULATION_BASED_REGIONS.NEURON_PARAMS.value, size=params_size, label='NeuronParams') def _write_neuron_parameters(self, spec, key, vertex_slice, machine_time_step, time_scale_factor): # pylint: disable=too-many-arguments n_atoms = vertex_slice.n_atoms spec.comment( "\nWriting Neuron Parameters for {} Neurons:\n".format(n_atoms)) # Set the focus to the memory region 2 (neuron parameters): spec.switch_write_focus( region=constants.POPULATION_BASED_REGIONS.NEURON_PARAMS.value) # Write the random back off value spec.write_value( random.randint(0, AbstractPopulationVertex._n_vertices)) # Write the number of microseconds between sending spikes time_between_spikes = ((machine_time_step * time_scale_factor) / (n_atoms * 2.0)) spec.write_value(data=int(time_between_spikes)) # Write whether the key is to be used, and then the key, or 0 if it # isn't to be used if key is None: spec.write_value(data=0) spec.write_value(data=0) else: spec.write_value(data=1) spec.write_value(data=key) # Write the number of neurons in the block: spec.write_value(data=n_atoms) # Write the number of synapse types spec.write_value(data=self._neuron_impl.get_n_synapse_types()) # Write the size of the incoming spike buffer spec.write_value(data=self._incoming_spike_buffer_size) # Write the number of variables that can be recorded spec.write_value( data=len(self._neuron_impl.get_recordable_variables())) # Write the recording data recording_data = self._neuron_recorder.get_data(vertex_slice) spec.write_array(recording_data) # Write the neuron parameters neuron_data = self._neuron_impl.get_data(self._parameters, self._state_variables, vertex_slice) spec.write_array(neuron_data) @inject_items({ "machine_time_step": "MachineTimeStep", "time_scale_factor": "TimeScaleFactor", "graph_mapper": "MemoryGraphMapper", "routing_info": "MemoryRoutingInfos" }) @overrides(AbstractRewritesDataSpecification.regenerate_data_specification, additional_arguments={ "machine_time_step", "time_scale_factor", "graph_mapper", "routing_info" }) def regenerate_data_specification(self, spec, placement, machine_time_step, time_scale_factor, graph_mapper, routing_info): # pylint: disable=too-many-arguments, arguments-differ vertex_slice = graph_mapper.get_slice(placement.vertex) # reserve the neuron parameters data region self._reserve_neuron_params_data_region( spec, graph_mapper.get_slice(placement.vertex)) # write the neuron params into the new DSG region self._write_neuron_parameters( key=routing_info.get_first_key_from_pre_vertex( placement.vertex, constants.SPIKE_PARTITION_ID), machine_time_step=machine_time_step, spec=spec, time_scale_factor=time_scale_factor, vertex_slice=vertex_slice) # close spec spec.end_specification() @overrides(AbstractRewritesDataSpecification. requires_memory_regions_to_be_reloaded) def requires_memory_regions_to_be_reloaded(self): return self._change_requires_neuron_parameters_reload @overrides(AbstractRewritesDataSpecification.mark_regions_reloaded) def mark_regions_reloaded(self): self._change_requires_neuron_parameters_reload = False @inject_items({ "machine_time_step": "MachineTimeStep", "time_scale_factor": "TimeScaleFactor", "graph_mapper": "MemoryGraphMapper", "application_graph": "MemoryApplicationGraph", "machine_graph": "MemoryMachineGraph", "routing_info": "MemoryRoutingInfos", "tags": "MemoryTags", "n_machine_time_steps": "TotalMachineTimeSteps", "placements": "MemoryPlacements", }) @overrides(AbstractGeneratesDataSpecification.generate_data_specification, additional_arguments={ "machine_time_step", "time_scale_factor", "graph_mapper", "application_graph", "machine_graph", "routing_info", "tags", "n_machine_time_steps", "placements", }) def generate_data_specification(self, spec, placement, machine_time_step, time_scale_factor, graph_mapper, application_graph, machine_graph, routing_info, tags, n_machine_time_steps, placements): # pylint: disable=too-many-arguments, arguments-differ vertex = placement.vertex spec.comment("\n*** Spec for block of {} neurons ***\n".format( self._neuron_impl.model_name)) vertex_slice = graph_mapper.get_slice(vertex) # Reserve memory regions self._reserve_memory_regions(spec, vertex_slice, vertex) # Declare random number generators and distributions: # TODO add random distribution stuff # self.write_random_distribution_declarations(spec) # Get the key key = routing_info.get_first_key_from_pre_vertex( vertex, constants.SPIKE_PARTITION_ID) # Write the setup region spec.switch_write_focus( constants.POPULATION_BASED_REGIONS.SYSTEM.value) spec.write_array( simulation_utilities.get_simulation_header_array( self.get_binary_file_name(), machine_time_step, time_scale_factor)) # Write the recording region spec.switch_write_focus( constants.POPULATION_BASED_REGIONS.RECORDING.value) ip_tags = tags.get_ip_tags_for_vertex(vertex) recorded_region_sizes = recording_utilities.get_recorded_region_sizes( self._get_buffered_sdram(vertex_slice, n_machine_time_steps), self._maximum_sdram_for_buffering) spec.write_array( recording_utilities.get_recording_header_array( recorded_region_sizes, self._time_between_requests, self._buffer_size_before_receive, ip_tags)) # Write the neuron parameters self._write_neuron_parameters(spec, key, vertex_slice, machine_time_step, time_scale_factor) # write profile data profile_utils.write_profile_region_data( spec, constants.POPULATION_BASED_REGIONS.PROFILING.value, self._n_profile_samples) # Get the weight_scale value from the appropriate location weight_scale = self._neuron_impl.get_global_weight_scale() # allow the synaptic matrix to write its data spec-able data self._synapse_manager.write_data_spec(spec, self, vertex_slice, vertex, placement, machine_graph, application_graph, routing_info, graph_mapper, weight_scale, machine_time_step, placements) # End the writing of this specification: spec.end_specification() @overrides(AbstractHasAssociatedBinary.get_binary_file_name) def get_binary_file_name(self): # Split binary name into title and extension binary_title, binary_extension = os.path.splitext( self._neuron_impl.binary_name) # Reunite title and extension and return return (binary_title + self._synapse_manager.vertex_executable_suffix + binary_extension) @overrides(AbstractHasAssociatedBinary.get_binary_start_type) def get_binary_start_type(self): return ExecutableType.USES_SIMULATION_INTERFACE @overrides(AbstractSpikeRecordable.is_recording_spikes) def is_recording_spikes(self): return self._neuron_recorder.is_recording("spikes") @overrides(AbstractSpikeRecordable.set_recording_spikes) def set_recording_spikes(self, new_state=True, sampling_interval=None, indexes=None): self.set_recording("spikes", new_state, sampling_interval, indexes) @overrides(AbstractSpikeRecordable.get_spikes) def get_spikes(self, placements, graph_mapper, buffer_manager, machine_time_step): return self._neuron_recorder.get_spikes(self.label, buffer_manager, self.SPIKE_RECORDING_REGION, placements, graph_mapper, self, machine_time_step) @overrides(AbstractNeuronRecordable.get_recordable_variables) def get_recordable_variables(self): return self._neuron_recorder.get_recordable_variables() @overrides(AbstractNeuronRecordable.is_recording) def is_recording(self, variable): return self._neuron_recorder.is_recording(variable) @overrides(AbstractNeuronRecordable.set_recording) def set_recording(self, variable, new_state=True, sampling_interval=None, indexes=None): self._change_requires_mapping = not self.is_recording(variable) self._neuron_recorder.set_recording(variable, new_state, sampling_interval, indexes) @overrides(AbstractNeuronRecordable.get_data) def get_data(self, variable, n_machine_time_steps, placements, graph_mapper, buffer_manager, machine_time_step): # pylint: disable=too-many-arguments index = 0 if variable != "spikes": index = 1 + self._neuron_impl.get_recordable_variable_index( variable) return self._neuron_recorder.get_matrix_data(self.label, buffer_manager, index, placements, graph_mapper, self, variable, n_machine_time_steps) @overrides(AbstractNeuronRecordable.get_neuron_sampling_interval) def get_neuron_sampling_interval(self, variable): return self._neuron_recorder.get_neuron_sampling_interval(variable) @overrides(AbstractSpikeRecordable.get_spikes_sampling_interval) def get_spikes_sampling_interval(self): return self._neuron_recorder.get_neuron_sampling_interval("spikes") @overrides(AbstractPopulationInitializable.initialize) def initialize(self, variable, value): if variable not in self._state_variables: raise KeyError("Vertex does not support initialisation of" " parameter {}".format(variable)) self._state_variables.set_value(variable, value) self._change_requires_neuron_parameters_reload = True @property def initialize_parameters(self): return self._pynn_model.default_initial_values.keys() def _get_parameter(self, variable): if variable.endswith("_init"): # method called with "V_init" key = variable[:-5] if variable in self._state_variables: # variable is v and parameter is v_init return variable elif key in self._state_variables: # Oops neuron defines v and not v_init return key else: # method called with "v" if variable + "_init" in self._state_variables: # variable is v and parameter is v_init return variable + "_init" if variable in self._state_variables: # Oops neuron defines v and not v_init return variable # parameter not found for this variable raise KeyError("No variable {} found in {}".format( variable, self._neuron_impl.model_name)) @overrides(AbstractPopulationInitializable.get_initial_value) def get_initial_value(self, variable, selector=None): parameter = self._get_parameter(variable) ranged_list = self._state_variables[parameter] if selector is None: return ranged_list return ranged_list.get_values(selector) @overrides(AbstractPopulationInitializable.set_initial_value) def set_initial_value(self, variable, value, selector=None): parameter = self._get_parameter(variable) ranged_list = self._state_variables[parameter] ranged_list.set_value_by_selector(selector, value) @property def conductance_based(self): return self._neuron_impl.is_conductance_based @overrides(AbstractPopulationSettable.get_value) def get_value(self, key): """ Get a property of the overall model. """ if key not in self._parameters: raise InvalidParameterType( "Population {} does not have parameter {}".format( self._neuron_impl.model_name, key)) return self._parameters[key] @overrides(AbstractPopulationSettable.set_value) def set_value(self, key, value): """ Set a property of the overall model. """ if key not in self._parameters: raise InvalidParameterType( "Population {} does not have parameter {}".format( self._neuron_impl.model_name, key)) self._parameters.set_value(key, value) self._change_requires_neuron_parameters_reload = True @overrides(AbstractReadParametersBeforeSet.read_parameters_from_machine) def read_parameters_from_machine(self, transceiver, placement, vertex_slice): # locate SDRAM address to where the neuron parameters are stored neuron_region_sdram_address = \ helpful_functions.locate_memory_region_for_placement( placement, constants.POPULATION_BASED_REGIONS.NEURON_PARAMS.value, transceiver) # shift past the extra stuff before neuron parameters that we don't # need to read neuron_parameters_sdram_address = ( neuron_region_sdram_address + self.BYTES_TILL_START_OF_GLOBAL_PARAMETERS) # get size of neuron params size_of_region = self._get_sdram_usage_for_neuron_params(vertex_slice) size_of_region -= self.BYTES_TILL_START_OF_GLOBAL_PARAMETERS # get data from the machine byte_array = transceiver.read_memory(placement.x, placement.y, neuron_parameters_sdram_address, size_of_region) # Skip the recorder globals as these are not change on machine # Just written out in case data is changed and written back offset = self._neuron_recorder.get_sdram_usage_in_bytes(vertex_slice) # update python neuron parameters with the data self._neuron_impl.read_data(byte_array, offset, vertex_slice, self._parameters, self._state_variables) @property def weight_scale(self): return self._neuron_impl.get_global_weight_scale() @property def ring_buffer_sigma(self): return self._synapse_manager.ring_buffer_sigma @ring_buffer_sigma.setter def ring_buffer_sigma(self, ring_buffer_sigma): self._synapse_manager.ring_buffer_sigma = ring_buffer_sigma @property def spikes_per_second(self): return self._synapse_manager.spikes_per_second @spikes_per_second.setter def spikes_per_second(self, spikes_per_second): self._synapse_manager.spikes_per_second = spikes_per_second @property def synapse_dynamics(self): return self._synapse_manager.synapse_dynamics def set_synapse_dynamics(self, synapse_dynamics): self._synapse_manager.synapse_dynamics = synapse_dynamics def add_pre_run_connection_holder(self, connection_holder, edge, synapse_info): # pylint: disable=arguments-differ self._synapse_manager.add_pre_run_connection_holder( connection_holder, edge, synapse_info) @overrides(AbstractAcceptsIncomingSynapses.get_connections_from_machine) def get_connections_from_machine( self, transceiver, placement, edge, graph_mapper, routing_infos, synapse_information, machine_time_step, using_extra_monitor_cores, placements=None, data_receiver=None, sender_extra_monitor_core_placement=None, extra_monitor_cores_for_router_timeout=None, handle_time_out_configuration=True, fixed_routes=None): # pylint: disable=too-many-arguments return self._synapse_manager.get_connections_from_machine( transceiver, placement, edge, graph_mapper, routing_infos, synapse_information, machine_time_step, using_extra_monitor_cores, placements, data_receiver, sender_extra_monitor_core_placement, extra_monitor_cores_for_router_timeout, handle_time_out_configuration, fixed_routes) def clear_connection_cache(self): self._synapse_manager.clear_connection_cache() def get_maximum_delay_supported_in_ms(self, machine_time_step): return self._synapse_manager.get_maximum_delay_supported_in_ms( machine_time_step) @overrides(AbstractProvidesIncomingPartitionConstraints. get_incoming_partition_constraints) def get_incoming_partition_constraints(self, partition): """ Gets the constraints for partitions going into this vertex. :param partition: partition that goes into this vertex :return: list of constraints """ return self._synapse_manager.get_incoming_partition_constraints() @overrides(AbstractProvidesOutgoingPartitionConstraints. get_outgoing_partition_constraints) def get_outgoing_partition_constraints(self, partition): """ Gets the constraints for partitions going out of this vertex. :param partition: the partition that leaves this vertex :return: list of constraints """ return [ContiguousKeyRangeContraint()] @overrides(AbstractNeuronRecordable.clear_recording) def clear_recording(self, variable, buffer_manager, placements, graph_mapper): index = 0 if variable != "spikes": index = 1 + self._neuron_impl.get_recordable_variable_index( variable) self._clear_recording_region(buffer_manager, placements, graph_mapper, index) @overrides(AbstractSpikeRecordable.clear_spike_recording) def clear_spike_recording(self, buffer_manager, placements, graph_mapper): self._clear_recording_region( buffer_manager, placements, graph_mapper, AbstractPopulationVertex.SPIKE_RECORDING_REGION) def _clear_recording_region(self, buffer_manager, placements, graph_mapper, recording_region_id): """ Clear a recorded data region from the buffer manager. :param buffer_manager: the buffer manager object :param placements: the placements object :param graph_mapper: the graph mapper object :param recording_region_id: the recorded region ID for clearing :rtype: None """ machine_vertices = graph_mapper.get_machine_vertices(self) for machine_vertex in machine_vertices: placement = placements.get_placement_of_vertex(machine_vertex) buffer_manager.clear_recorded_data(placement.x, placement.y, placement.p, recording_region_id) @overrides(AbstractContainsUnits.get_units) def get_units(self, variable): if self._neuron_impl.is_recordable(variable): return self._neuron_impl.get_recordable_units(variable) if variable not in self._parameters: raise Exception("Population {} does not have parameter {}".format( self._neuron_impl.model_name, variable)) return self._neuron_impl.get_units(variable) def describe(self): """ Get a human-readable description of the cell or synapse type. The output may be customised by specifying a different template\ together with an associated template engine\ (see ``pyNN.descriptions``). If template is None, then a dictionary containing the template context\ will be returned. """ parameters = dict() for parameter_name in self._pynn_model.default_parameters: parameters[parameter_name] = self.get_value(parameter_name) context = { "name": self._neuron_impl.model_name, "default_parameters": self._pynn_model.default_parameters, "default_initial_values": self._pynn_model.default_parameters, "parameters": parameters, } return context def get_synapse_id_by_target(self, target): return self._neuron_impl.get_synapse_id_by_target(target) def __str__(self): return "{} with {} atoms".format(self.label, self.n_atoms) def __repr__(self): return self.__str__() def gen_on_machine(self, vertex_slice): return self._synapse_manager.gen_on_machine(vertex_slice)