def get_squeezenet_model(layers): base_model = SqueezeNet(content_layers) all_n = [] all_n = get_ckpt_weights('../squeezenet_weights/squeezenet.ckpt') all_weights = [] for w in base_model.model.weights: all_weights.append(all_n[weight_to_weight[w.name]]) base_model.set_weights(all_weights) base_model.trainable = False dream_model = base_model return dream_model
return total_variation_weight * tf.image.total_variation(img) if __name__ == '__main__': m = SqueezeNet() all_n = [] all_n = get_ckpt_weights('../squeezenet_weights/squeezenet.ckpt') all_weights = [] for w in m.model.weights: all_weights.append(all_n[weight_to_weight[w.name]]) m.set_weights(all_weights) m.trainable = False sw = 0.012 params1 = { 'content_image': 'styles/blackpool.jpg', #'style_image' : 'styles/composition_vii.jpg', #'style_image' : 'styles/muse.jpg', #'style_image': 'styles/starry_night.jpg', #'style_image': 'styles/impr_sunset.jpg', #'style_image': 'styles/the_scream.jpg', #'style_image': 'styles/mona.jpg', 'style_image': 'styles/farm-painting.jpg',