def main(): # Load the dataset X, y = datasets.make_blobs() # Cluster the data clf = GaussianMixtureModel(k=3) y_pred = clf.predict(X) p = Plot() p.plot_in_2d(X, y_pred, title="GMM Clustering") p.plot_in_2d(X, y, title="Actual Clustering")
def main(): # Load the dataset X, y = datasets.make_blobs() # Cluster the data using K-Means clf = KMeans(k=3) y_pred = clf.predict(X) # Project the data onto the 2 primary principal components p = Plot() p.plot_in_2d(X, y_pred, title="K-Means Clustering") p.plot_in_2d(X, y, title="Actual Clustering")
def main(): # Load the dataset X, y = datasets.make_moons(n_samples=300, noise=0.08, shuffle=False) # Cluster the data using DBSCAN clf = DBSCAN(eps=0.17, min_samples=5) y_pred = clf.predict(X) # Project the data onto the 2 primary principal components p = Plot() p.plot_in_2d(X, y_pred, title="DBSCAN") p.plot_in_2d(X, y, title="Actual Clustering")