"episode: {}/{}, score: {}, e's: {}\nNumber of Controller breaks : {}" .format(episode, EPISODES, running_meta_reward, epsilon, no_controller_breaks)) print("The state is : ", meta_end_state) break confidence_state = next_confidence_state if episode % 200 == 0: print("Episodes : {}".format(episode)) # Saving the progress print("Saving") # convert this to save model for each policy MetaAgent.save(filename) # agent.saveController(fileController) sleep(0.2) print("Done Saving You can Now Quit") sleep(1) if __name__ == "__main__": if args['set_gpu'] is not None: print("Using the GPU ") DQNAgent.setup_gpu(int(args['set_gpu'])) else: print("{LOG} Using the CPU for Computation") pass main()
"episode: {}/{}, score: {}, e's: {}\nNumber of Controller breaks : {}" .format(episode, EPISODES, running_reward, epsilon, no_controller_breaks)) print("The state is : ", meta_end_state) break confidence_state = next_confidence_state if episode % 200 == 0: print("Episodes : {}".format(episode)) # Saving the progress print("Saving") # convert this to save model for each policy MetaAgent.save(filename) # agent.saveController(fileController) sleep(0.2) print("Done Saving You can Now Quit") sleep(1) if __name__ == "__main__": if args['set_gpu'] is not None: print("Using the GPU ") DQNAgent.setup_gpu(str(args['set_gpu'])) else: print("{LOG} Using the CPU for Computation") pass main()