예제 #1
0
  def _factorized_reduction(self, x, out_filters, stride, is_training):
    """Reduces the shape of x without information loss due to striding."""
    assert out_filters % 2 == 0, (
        "Need even number of filters when using this factorized reduction.")
    if stride == 1:
      with tf.variable_scope("path_conv"):
        inp_c = self._get_C(x)
        w = create_weight("w", [1, 1, inp_c, out_filters])
        x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME",
                         data_format=self.data_format)
        x = batch_norm(x, is_training, data_format=self.data_format)
        return x

    stride_spec = self._get_strides(stride)
    # Skip path 1
    path1 = tf.nn.avg_pool(
        x, [1, 1, 1, 1], stride_spec, "VALID", data_format=self.data_format)
    with tf.variable_scope("path1_conv"):
      inp_c = self._get_C(path1)
      w = create_weight("w", [1, 1, inp_c, out_filters // 2])
      path1 = tf.nn.conv2d(path1, w, [1, 1, 1, 1], "SAME",
                           data_format=self.data_format)
  
    # Skip path 2
    # First pad with 0"s on the right and bottom, then shift the filter to
    # include those 0"s that were added.
    if self.data_format == "NHWC":
      pad_arr = [[0, 0], [0, 1], [0, 1], [0, 0]]
      path2 = tf.pad(x, pad_arr)[:, 1:, 1:, :]
      concat_axis = 3
    else:
      pad_arr = [[0, 0], [0, 0], [0, 1], [0, 1]]
      path2 = tf.pad(x, pad_arr)[:, :, 1:, 1:]
      concat_axis = 1
  
    path2 = tf.nn.avg_pool(
        path2, [1, 1, 1, 1], stride_spec, "VALID", data_format=self.data_format)
    with tf.variable_scope("path2_conv"):
      inp_c = self._get_C(path2)
      w = create_weight("w", [1, 1, inp_c, out_filters // 2])
      path2 = tf.nn.conv2d(path2, w, [1, 1, 1, 1], "SAME",
                           data_format=self.data_format)
  
    # Concat and apply BN
    final_path = tf.concat(values=[path1, path2], axis=concat_axis)
    final_path = batch_norm(final_path, is_training,
                            data_format=self.data_format)

    return final_path
예제 #2
0
  def _model(self, images, is_training, reuse=False):
    with tf.variable_scope(self.name, reuse=reuse):
      layers = []

      ## compute number of ReLUs
      self.channel_size = self.out_filters
      self.relu_size = tf.constant(0, dtype=tf.int32)

      out_filters = self.out_filters
      with tf.variable_scope("stem_conv"):
        w = create_weight("w", [3, 3, 3, out_filters])
        x = tf.nn.conv2d(images, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
        x = batch_norm(x, is_training, data_format=self.data_format)
        layers.append(x)

      if self.whole_channels:
        start_idx = 0
      else:
        start_idx = self.num_branches
      for layer_id in range(self.num_layers):
        
        with tf.variable_scope("layer_{0}".format(layer_id)):
          if self.fixed_arc is None:
            x = self._enas_layer(layer_id, layers, start_idx, out_filters, is_training)
          else:
            x = self._fixed_layer(layer_id, layers, start_idx, out_filters, is_training)
          layers.append(x)
          if layer_id in self.pool_layers:
            self.channel_size *= 2
            if self.fixed_arc is not None:
              ## ReLU balancing
              out_filters *= 4
            with tf.variable_scope("pool_at_{0}".format(layer_id)):
              pooled_layers = []
              for i, layer in enumerate(layers):
                with tf.variable_scope("from_{0}".format(i)):
                  x = self._factorized_reduction(
                    layer, out_filters, 2, is_training)
                pooled_layers.append(x)
              layers = pooled_layers
        if self.whole_channels:
          start_idx += 1 + layer_id
        else:
          start_idx += 2 * self.num_branches + layer_id
        print(layers[-1])

      x = global_avg_pool(x, data_format=self.data_format)
      if is_training:
        x = tf.nn.dropout(x, self.keep_prob)
      with tf.variable_scope("fc"):
        if self.data_format == "NWHC":
          inp_c = x.get_shape()[3].value
        elif self.data_format == "NCHW":
          inp_c = x.get_shape()[1].value
        else:
          raise ValueError("Unknown data_format {0}".format(self.data_format))
        w = create_weight("w", [inp_c, 100])
        x = tf.matmul(x, w)
    return x
예제 #3
0
    def _maybe_calibrate_size(self, layers, out_filters, is_training):
        """Makes sure layers[0] and layers[1] have the same shapes."""

        hw = [self._get_HW(layer) for layer in layers]
        c = [self._get_C(layer) for layer in layers]

        with tf.variable_scope("calibrate"):
            x = layers[0]
            if hw[0] != hw[1]:
                assert hw[0] == 2 * hw[1]
                with tf.variable_scope("pool_x"):
                    x = tf.nn.relu(x)
                    #shape = x.get_shape()
                    #self.relu_size+=shape[1].value*shape[2].value*shape[3].value
                    x = self._factorized_reduction(x, out_filters, 2,
                                                   is_training)
            elif c[0] != out_filters:
                with tf.variable_scope("pool_x"):
                    w = create_weight("w", [1, 1, c[0], out_filters])
                    x = tf.nn.relu(x)
                    #shape = x.get_shape()
                    #self.relu_size+=shape[1].value*shape[2].value*shape[3].value
                    x = tf.nn.conv2d(x,
                                     w, [1, 1, 1, 1],
                                     "SAME",
                                     data_format=self.data_format)
                    x = batch_norm(x,
                                   is_training,
                                   data_format=self.data_format)

            y = layers[1]
            if c[1] != out_filters:
                with tf.variable_scope("pool_y"):
                    w = create_weight("w", [1, 1, c[1], out_filters])
                    y = tf.nn.relu(y)
                    #shape = y.get_shape()
                    #self.relu_size+=shape[1].value*shape[2].value*shape[3].value
                    y = tf.nn.conv2d(y,
                                     w, [1, 1, 1, 1],
                                     "SAME",
                                     data_format=self.data_format)
                    y = batch_norm(y,
                                   is_training,
                                   data_format=self.data_format)
        return [x, y]
예제 #4
0
  def _pool_branch(self, inputs, is_training, count, avg_or_max, start_idx=None):
    """
    Args:
      start_idx: where to start taking the output channels. if None, assuming
        fixed_arc mode
      count: how many output_channels to take.
    """

    if start_idx is None:
      assert self.fixed_arc is not None, "you screwed up!"

    if self.data_format == "NHWC":
      inp_c = inputs.get_shape()[3].value
    elif self.data_format == "NCHW":
      inp_c = inputs.get_shape()[1].value

    with tf.variable_scope("conv_1"):
      w = create_weight("w", [1, 1, inp_c, self.out_filters])
      x = tf.nn.conv2d(inputs, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
      x = batch_norm(x, is_training, data_format=self.data_format)
      x = tf.nn.relu(x)

    with tf.variable_scope("pool"):
      if self.data_format == "NHWC":
        actual_data_format = "channels_last"
      elif self.data_format == "NCHW":
        actual_data_format = "channels_first"

      if avg_or_max == "avg":
        x = tf.layers.average_pooling2d(
          x, [3, 3], [1, 1], "SAME", data_format=actual_data_format)
      elif avg_or_max == "max":
        x = tf.layers.max_pooling2d(
          x, [3, 3], [1, 1], "SAME", data_format=actual_data_format)
      else:
        raise ValueError("Unknown pool {}".format(avg_or_max))

      if start_idx is not None:
        if self.data_format == "NHWC":
          x = x[:, :, :, start_idx : start_idx+count]
        elif self.data_format == "NCHW":
          x = x[:, start_idx : start_idx+count, :, :]

    return x
예제 #5
0
    def _fixed_conv(self,
                    x,
                    f_size,
                    out_filters,
                    stride,
                    is_training,
                    stack_convs=2):
        """Apply fixed convolution.

    Args:
      stacked_convs: number of separable convs to apply.
    """

        self.fixed_size += 1
        for conv_id in range(stack_convs):
            inp_c = self._get_C(x)
            if conv_id == 0:
                strides = self._get_strides(stride)
            else:
                strides = [1, 1, 1, 1]

            with tf.variable_scope("sep_conv_{}".format(conv_id)):
                w_depthwise = create_weight("w_depth",
                                            [f_size, f_size, inp_c, 1])
                w_pointwise = create_weight("w_point",
                                            [1, 1, inp_c, out_filters])
                x = tf.nn.relu(x)
                shape = x.get_shape()
                self.relu_size += shape[1].value * shape[2].value * shape[
                    3].value

                x = tf.nn.separable_conv2d(x,
                                           depthwise_filter=w_depthwise,
                                           pointwise_filter=w_pointwise,
                                           strides=strides,
                                           padding="SAME",
                                           data_format=self.data_format)
                x = batch_norm(x, is_training, data_format=self.data_format)

        return x
예제 #6
0
    def _enas_layer(self, layer_id, prev_layers, arc, out_filters):
        """
    Args:
      layer_id: current layer
      prev_layers: cache of previous layers. for skip connections
      start_idx: where to start looking at. technically, we can infer this
        from layer_id, but why bother...
    """

        assert len(prev_layers) == 2, "need exactly 2 inputs"
        layers = [prev_layers[0], prev_layers[1]]
        layers = self._maybe_calibrate_size(layers,
                                            out_filters,
                                            is_training=True)
        used = []
        for cell_id in range(self.num_cells):
            prev_layers = tf.stack(layers, axis=0)
            with tf.variable_scope("cell_{0}".format(cell_id)):
                with tf.variable_scope("x"):
                    x_id = arc[4 * cell_id]
                    x_op = arc[4 * cell_id + 1]
                    x = prev_layers[x_id, :, :, :, :]
                    x = self._enas_cell(x, cell_id, x_id, x_op, out_filters)
                    x_used = tf.one_hot(x_id,
                                        depth=self.num_cells + 2,
                                        dtype=tf.int32)

                with tf.variable_scope("y"):
                    y_id = arc[4 * cell_id + 2]
                    y_op = arc[4 * cell_id + 3]
                    y = prev_layers[y_id, :, :, :, :]
                    y = self._enas_cell(y, cell_id, y_id, y_op, out_filters)
                    y_used = tf.one_hot(y_id,
                                        depth=self.num_cells + 2,
                                        dtype=tf.int32)

                out = x + y
                used.extend([x_used, y_used])
                layers.append(out)

        used = tf.add_n(used)
        indices = tf.where(tf.equal(used, 0))
        indices = tf.to_int32(indices)
        indices = tf.reshape(indices, [-1])
        num_outs = tf.size(indices)
        out = tf.stack(layers, axis=0)
        out = tf.gather(out, indices, axis=0)

        inp = prev_layers[0]
        if self.data_format == "NHWC":
            N = tf.shape(inp)[0]
            H = tf.shape(inp)[1]
            W = tf.shape(inp)[2]
            C = tf.shape(inp)[3]
            out = tf.transpose(out, [1, 2, 3, 0, 4])
            out = tf.reshape(out, [N, H, W, num_outs * out_filters])
        elif self.data_format == "NCHW":
            N = tf.shape(inp)[0]
            C = tf.shape(inp)[1]
            H = tf.shape(inp)[2]
            W = tf.shape(inp)[3]
            out = tf.transpose(out, [1, 0, 2, 3, 4])
            out = tf.reshape(out, [N, num_outs * out_filters, H, W])
        else:
            raise ValueError("Unknown data_format '{0}'".format(
                self.data_format))

        with tf.variable_scope("final_conv"):
            w = create_weight("w",
                              [self.num_cells + 2, out_filters * out_filters])
            w = tf.gather(w, indices, axis=0)
            w = tf.reshape(w, [1, 1, num_outs * out_filters, out_filters])
            out = tf.nn.relu(out)
            out = tf.nn.conv2d(out,
                               w,
                               strides=[1, 1, 1, 1],
                               padding="SAME",
                               data_format=self.data_format)
            out = batch_norm(out,
                             is_training=True,
                             data_format=self.data_format)

        out = tf.reshape(out, tf.shape(prev_layers[0]))

        return out
예제 #7
0
    def _enas_cell(self, x, curr_cell, prev_cell, op_id, out_filters):
        """Performs an enas operation specified by op_id."""

        num_possible_inputs = curr_cell + 1

        with tf.variable_scope("avg_pool"):
            avg_pool = tf.layers.average_pooling2d(
                x, [3, 3], [1, 1], "SAME", data_format=self.actual_data_format)
            avg_pool_c = self._get_C(avg_pool)
            if avg_pool_c != out_filters:
                with tf.variable_scope("conv"):
                    w = create_weight(
                        "w", [num_possible_inputs, avg_pool_c * out_filters])
                    w = w[prev_cell]
                    w = tf.reshape(w, [1, 1, avg_pool_c, out_filters])
                    avg_pool = tf.nn.relu(avg_pool)
                    avg_pool = tf.nn.conv2d(avg_pool,
                                            w,
                                            strides=[1, 1, 1, 1],
                                            padding="SAME",
                                            data_format=self.data_format)
                    avg_pool = batch_norm(avg_pool,
                                          is_training=True,
                                          data_format=self.data_format)

        with tf.variable_scope("max_pool"):
            max_pool = tf.layers.max_pooling2d(
                x, [3, 3], [1, 1], "SAME", data_format=self.actual_data_format)
            max_pool_c = self._get_C(max_pool)
            if max_pool_c != out_filters:
                with tf.variable_scope("conv"):
                    w = create_weight(
                        "w", [num_possible_inputs, max_pool_c * out_filters])
                    w = w[prev_cell]
                    w = tf.reshape(w, [1, 1, max_pool_c, out_filters])
                    max_pool = tf.nn.relu(max_pool)
                    max_pool = tf.nn.conv2d(max_pool,
                                            w,
                                            strides=[1, 1, 1, 1],
                                            padding="SAME",
                                            data_format=self.data_format)
                    max_pool = batch_norm(max_pool,
                                          is_training=True,
                                          data_format=self.data_format)

        x_c = self._get_C(x)
        if x_c != out_filters:
            with tf.variable_scope("x_conv"):
                w = create_weight("w",
                                  [num_possible_inputs, x_c * out_filters])
                w = w[prev_cell]
                w = tf.reshape(w, [1, 1, x_c, out_filters])
                x = tf.nn.relu(x)
                x = tf.nn.conv2d(x,
                                 w,
                                 strides=[1, 1, 1, 1],
                                 padding="SAME",
                                 data_format=self.data_format)
                x = batch_norm(x,
                               is_training=True,
                               data_format=self.data_format)

        out = [
            self._enas_conv(x, curr_cell, prev_cell, 3, out_filters),
            self._enas_conv(x, curr_cell, prev_cell, 5, out_filters),
            avg_pool,
            max_pool,
            x,
        ]

        out = tf.stack(out, axis=0)
        out = out[op_id, :, :, :, :]
        return out
예제 #8
0
    def _fixed_layer(self,
                     layer_id,
                     prev_layers,
                     arc,
                     out_filters,
                     stride,
                     is_training,
                     normal_or_reduction_cell="normal"):
        """
    Args:
      prev_layers: cache of previous layers. for skip connections
      is_training: for batch_norm
    """

        assert len(prev_layers) == 2
        layers = [prev_layers[0], prev_layers[1]]
        layers = self._maybe_calibrate_size(layers,
                                            out_filters,
                                            is_training=is_training)

        with tf.variable_scope("layer_base"):
            x = layers[1]
            inp_c = self._get_C(x)
            w = create_weight("w", [1, 1, inp_c, out_filters])
            x = tf.nn.relu(x)
            #shape = x.get_shape()
            #self.relu_size+=shape[1].value*shape[2].value*shape[3].value
            x = tf.nn.conv2d(x,
                             w, [1, 1, 1, 1],
                             "SAME",
                             data_format=self.data_format)
            x = batch_norm(x, is_training, data_format=self.data_format)
            layers[1] = x

        used = np.zeros([self.num_cells + 2], dtype=np.int32)
        f_sizes = [3, 5]
        for cell_id in range(self.num_cells):
            with tf.variable_scope("cell_{}".format(cell_id)):
                x_id = arc[4 * cell_id]
                used[x_id] += 1
                x_op = arc[4 * cell_id + 1]
                x = layers[x_id]
                x_stride = stride if x_id in [0, 1] else 1
                with tf.variable_scope("x_conv"):
                    if x_op in [0, 1]:
                        f_size = f_sizes[x_op]
                        x = self._fixed_conv(x, f_size, out_filters, x_stride,
                                             is_training)
                    elif x_op in [2, 3]:
                        inp_c = self._get_C(x)
                        if x_op == 2:
                            x = tf.layers.average_pooling2d(
                                x, [3, 3], [x_stride, x_stride],
                                "SAME",
                                data_format=self.actual_data_format)
                        else:
                            x = tf.layers.max_pooling2d(
                                x, [3, 3], [x_stride, x_stride],
                                "SAME",
                                data_format=self.actual_data_format)
                        if inp_c != out_filters:
                            w = create_weight("w", [1, 1, inp_c, out_filters])
                            x = tf.nn.relu(x)
                            #shape = x.get_shape()
                            #self.relu_size+=shape[1].value*shape[2].value*shape[3].value
                            x = tf.nn.conv2d(x,
                                             w, [1, 1, 1, 1],
                                             "SAME",
                                             data_format=self.data_format)
                            x = batch_norm(x,
                                           is_training,
                                           data_format=self.data_format)
                    else:
                        inp_c = self._get_C(x)
                        if x_stride > 1:
                            assert x_stride == 2
                            x = self._factorized_reduction(
                                x, out_filters, 2, is_training)
                        if inp_c != out_filters:
                            w = create_weight("w", [1, 1, inp_c, out_filters])
                            x = tf.nn.relu(x)
                            #shape = x.get_shape()
                            #self.relu_size+=shape[1].value*shape[2].value*shape[3].value
                            x = tf.nn.conv2d(x,
                                             w, [1, 1, 1, 1],
                                             "SAME",
                                             data_format=self.data_format)
                            x = batch_norm(x,
                                           is_training,
                                           data_format=self.data_format)
                    if (x_op in [0, 1, 2, 3]
                            and self.drop_path_keep_prob is not None
                            and is_training):
                        x = self._apply_drop_path(x, layer_id)

                y_id = arc[4 * cell_id + 2]
                used[y_id] += 1
                y_op = arc[4 * cell_id + 3]
                y = layers[y_id]
                y_stride = stride if y_id in [0, 1] else 1
                with tf.variable_scope("y_conv"):
                    if y_op in [0, 1]:
                        f_size = f_sizes[y_op]
                        y = self._fixed_conv(y, f_size, out_filters, y_stride,
                                             is_training)
                    elif y_op in [2, 3]:
                        inp_c = self._get_C(y)
                        if y_op == 2:
                            y = tf.layers.average_pooling2d(
                                y, [3, 3], [y_stride, y_stride],
                                "SAME",
                                data_format=self.actual_data_format)
                        else:
                            y = tf.layers.max_pooling2d(
                                y, [3, 3], [y_stride, y_stride],
                                "SAME",
                                data_format=self.actual_data_format)
                        if inp_c != out_filters:
                            w = create_weight("w", [1, 1, inp_c, out_filters])
                            y = tf.nn.relu(y)
                            #shape = y.get_shape()
                            #self.relu_size+=shape[1].value*shape[2].value*shape[3].value
                            y = tf.nn.conv2d(y,
                                             w, [1, 1, 1, 1],
                                             "SAME",
                                             data_format=self.data_format)
                            y = batch_norm(y,
                                           is_training,
                                           data_format=self.data_format)
                    else:
                        inp_c = self._get_C(y)
                        if y_stride > 1:
                            assert y_stride == 2
                            y = self._factorized_reduction(
                                y, out_filters, 2, is_training)
                        if inp_c != out_filters:
                            w = create_weight("w", [1, 1, inp_c, out_filters])
                            y = tf.nn.relu(y)
                            #shape = y.get_shape()
                            #self.relu_size+=shape[1].value*shape[2].value*shape[3].value
                            y = tf.nn.conv2d(y,
                                             w, [1, 1, 1, 1],
                                             "SAME",
                                             data_format=self.data_format)
                            y = batch_norm(y,
                                           is_training,
                                           data_format=self.data_format)

                    if (y_op in [0, 1, 2, 3]
                            and self.drop_path_keep_prob is not None
                            and is_training):
                        y = self._apply_drop_path(y, layer_id)

                out = x + y
                layers.append(out)
        out = self._fixed_combine(layers, used, out_filters, is_training,
                                  normal_or_reduction_cell)

        return out
예제 #9
0
    def _model(self, images, is_training, reuse=False):
        """Compute the logits given the images."""

        self.relu_size = tf.constant(0, dtype=tf.int32)
        self.fixed_size = tf.constant(0, dtype=tf.int32)

        if self.fixed_arc is None:
            is_training = True

        with tf.variable_scope(self.name, reuse=reuse):
            # the first two inputs
            with tf.variable_scope("stem_conv"):
                w = create_weight("w", [3, 3, 3, self.out_filters * 3])
                x = tf.nn.conv2d(images,
                                 w, [1, 1, 1, 1],
                                 "SAME",
                                 data_format=self.data_format)
                x = batch_norm(x, is_training, data_format=self.data_format)
            if self.data_format == "NHCW":
                split_axis = 3
            elif self.data_format == "NCHW":
                split_axis = 1
            else:
                raise ValueError("Unknown data_format '{0}'".format(
                    self.data_format))
            layers = [x, x]

            # building layers in the micro space
            out_filters = self.out_filters
            for layer_id in range(self.num_layers + 2):
                with tf.variable_scope("layer_{0}".format(layer_id)):
                    if layer_id not in self.pool_layers:
                        if self.fixed_arc is None:
                            x = self._enas_layer(layer_id, layers,
                                                 self.normal_arc, out_filters)
                        else:
                            x = self._fixed_layer(
                                layer_id,
                                layers,
                                self.normal_arc,
                                out_filters,
                                1,
                                is_training,
                                normal_or_reduction_cell="normal")
                    else:
                        out_filters *= 2
                        if self.fixed_arc is None:
                            x = self._factorized_reduction(
                                x, out_filters, 2, is_training)
                            layers = [layers[-1], x]
                            x = self._enas_layer(layer_id, layers,
                                                 self.reduce_arc, out_filters)
                        else:
                            x = self._fixed_layer(
                                layer_id,
                                layers,
                                self.reduce_arc,
                                out_filters,
                                2,
                                is_training,
                                normal_or_reduction_cell="reduction")
                    print("Layer {0:>2d}: {1}".format(layer_id, x))
                    layers = [layers[-1], x]

                # auxiliary heads
                self.num_aux_vars = 0
                if (self.use_aux_heads and layer_id in self.aux_head_indices
                        and is_training):
                    print("Using aux_head at layer {0}".format(layer_id))
                    with tf.variable_scope("aux_head"):
                        aux_logits = tf.nn.relu(x)
                        aux_logits = tf.layers.average_pooling2d(
                            aux_logits, [5, 5], [3, 3],
                            "VALID",
                            data_format=self.actual_data_format)
                        with tf.variable_scope("proj"):
                            inp_c = self._get_C(aux_logits)
                            w = create_weight("w", [1, 1, inp_c, 128])
                            aux_logits = tf.nn.conv2d(
                                aux_logits,
                                w, [1, 1, 1, 1],
                                "SAME",
                                data_format=self.data_format)
                            aux_logits = batch_norm(
                                aux_logits,
                                is_training=True,
                                data_format=self.data_format)
                            aux_logits = tf.nn.relu(aux_logits)

                        with tf.variable_scope("avg_pool"):
                            inp_c = self._get_C(aux_logits)
                            hw = self._get_HW(aux_logits)
                            w = create_weight("w", [hw, hw, inp_c, 768])
                            aux_logits = tf.nn.conv2d(
                                aux_logits,
                                w, [1, 1, 1, 1],
                                "SAME",
                                data_format=self.data_format)
                            aux_logits = batch_norm(
                                aux_logits,
                                is_training=True,
                                data_format=self.data_format)
                            aux_logits = tf.nn.relu(aux_logits)

                        with tf.variable_scope("fc"):
                            aux_logits = global_avg_pool(
                                aux_logits, data_format=self.data_format)
                            inp_c = aux_logits.get_shape()[1].value
                            w = create_weight("w", [inp_c, 10])
                            aux_logits = tf.matmul(aux_logits, w)
                            self.aux_logits = aux_logits

                    aux_head_variables = [
                        var for var in tf.trainable_variables()
                        if (var.name.startswith(self.name)
                            and "aux_head" in var.name)
                    ]
                    self.num_aux_vars = count_model_params(aux_head_variables)
                    print("Aux head uses {0} params".format(self.num_aux_vars))

            x = tf.nn.relu(x)
            #FIXME
            #shape = x.get_shape()
            #self.relu_size+=shape[1].value*shape[2].value*shape[3].value
            x = global_avg_pool(x, data_format=self.data_format)
            if is_training and self.keep_prob is not None and self.keep_prob < 1.0:
                x = tf.nn.dropout(x, self.keep_prob)
            with tf.variable_scope("fc"):
                inp_c = self._get_C(x)
                w = create_weight("w", [inp_c, 10])
                x = tf.matmul(x, w)
        return x
예제 #10
0
  def _conv_branch(self, inputs, filter_size, is_training, count, out_filters,
                   ch_mul=1, start_idx=None, separable=False):
    """
    Args:
      start_idx: where to start taking the output channels. if None, assuming
        fixed_arc mode
      count: how many output_channels to take.
    """

    if start_idx is None:
      assert self.fixed_arc is not None, "you screwed up!"

    if self.data_format == "NHWC":
      inp_c = inputs.get_shape()[3].value
    elif self.data_format == "NCHW":
      inp_c = inputs.get_shape()[1].value

    with tf.variable_scope("inp_conv_1"):
      w = create_weight("w", [1, 1, inp_c, out_filters])
      x = tf.nn.conv2d(inputs, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
      x = batch_norm(x, is_training, data_format=self.data_format)
      x = tf.nn.relu(x)

    with tf.variable_scope("out_conv_{}".format(filter_size)):
      if start_idx is None:
        if separable:
          w_depth = create_weight(
            "w_depth", [self.filter_size, self.filter_size, out_filters, ch_mul])
          w_point = create_weight("w_point", [1, 1, out_filters * ch_mul, count])
          x = tf.nn.separable_conv2d(x, w_depth, w_point, strides=[1, 1, 1, 1],
                                     padding="SAME", data_format=self.data_format)
          x = batch_norm(x, is_training, data_format=self.data_format)
        else:
          w = create_weight("w", [filter_size, filter_size, inp_c, count])
          x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
          x = batch_norm(x, is_training, data_format=self.data_format)
      else:
        if separable:
          w_depth = create_weight("w_depth", [filter_size, filter_size, out_filters, ch_mul])
          w_point = create_weight("w_point", [out_filters, out_filters * ch_mul])
          w_point = w_point[start_idx:start_idx+count, :]
          w_point = tf.transpose(w_point, [1, 0])
          w_point = tf.reshape(w_point, [1, 1, out_filters * ch_mul, count])

          x = tf.nn.separable_conv2d(x, w_depth, w_point, strides=[1, 1, 1, 1],
                                     padding="SAME", data_format=self.data_format)
          mask = tf.range(0, out_filters, dtype=tf.int32)
          mask = tf.logical_and(start_idx <= mask, mask < start_idx + count)
          x = batch_norm_with_mask(
            x, is_training, mask, out_filters, data_format=self.data_format)
        else:
          w = create_weight("w", [filter_size, filter_size, out_filters, out_filters])
          w = tf.transpose(w, [3, 0, 1, 2])
          w = w[start_idx:start_idx+count, :, :, :]
          w = tf.transpose(w, [1, 2, 3, 0])
          x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
          mask = tf.range(0, out_filters, dtype=tf.int32)
          mask = tf.logical_and(start_idx <= mask, mask < start_idx + count)
          x = batch_norm_with_mask(
            x, is_training, mask, out_filters, data_format=self.data_format)
      x = tf.nn.relu(x)
    return x
예제 #11
0
  def _fixed_layer(
      self, layer_id, prev_layers, start_idx, out_filters, is_training):
    """
    Args:
      layer_id: current layer
      prev_layers: cache of previous layers. for skip connections
      start_idx: where to start looking at. technically, we can infer this
        from layer_id, but why bother...
      is_training: for batch_norm
    """

    inputs = prev_layers[-1]
    if self.whole_channels:
      if self.data_format == "NHWC":
        inp_c = inputs.get_shape()[3].value
      elif self.data_format == "NCHW":
        inp_c = inputs.get_shape()[1].value

      count = self.sample_arc[start_idx]
      if count in [0, 1, 2, 3]:
        size = [3, 3, 5, 5]
        filter_size = size[count]
        ## Removing 1x1 blocks in cryptonas
        #with tf.variable_scope("conv_1x1"):
        #  w = create_weight("w", [1, 1, inp_c, out_filters])
        #  out = tf.nn.relu(inputs)
        #  shape = inputs.get_shape()
        #  self.relu_size+=shape[1].value*shape[2].value*shape[3].value
        #  out = tf.nn.conv2d(out, w, [1, 1, 1, 1], "SAME",
        #                     data_format=self.data_format)
        #  out = batch_norm(out, is_training, data_format=self.data_format)

        with tf.variable_scope("conv_{0}x{0}".format(filter_size)):
          #w = create_weight("w", [filter_size, filter_size, out_filters, out_filters])
          #out = tf.nn.relu(out)
          w = create_weight("w", [filter_size, filter_size, inp_c, out_filters])
          out = tf.nn.relu(inputs)
          shape = out.get_shape()
          self.relu_size+=shape[1].value*shape[2].value*shape[3].value
          out = tf.nn.conv2d(out, w, [1, 1, 1, 1], "SAME",
                             data_format=self.data_format)
          out = batch_norm(out, is_training, data_format=self.data_format)
      elif count == 4:
        pass
      elif count == 5:
        pass
      else:
        raise ValueError("Unknown operation number '{0}'".format(count))
    else:
      count = (self.sample_arc[start_idx:start_idx + 2*self.num_branches] *
               self.out_filters_scale)
      branches = []
      total_out_channels = 0
      with tf.variable_scope("branch_0"):
        total_out_channels += count[1]
        branches.append(self._conv_branch(inputs, 3, is_training, count[1]))
      with tf.variable_scope("branch_1"):
        total_out_channels += count[3]
        branches.append(
          self._conv_branch(inputs, 3, is_training, count[3], separable=True))
      with tf.variable_scope("branch_2"):
        total_out_channels += count[5]
        branches.append(self._conv_branch(inputs, 5, is_training, count[5]))
      with tf.variable_scope("branch_3"):
        total_out_channels += count[7]
        branches.append(
          self._conv_branch(inputs, 5, is_training, count[7], separable=True))
      if self.num_branches >= 5:
        with tf.variable_scope("branch_4"):
          total_out_channels += count[9]
          branches.append(
            self._pool_branch(inputs, is_training, count[9], "avg"))
      if self.num_branches >= 6:
        with tf.variable_scope("branch_5"):
          total_out_channels += count[11]
          branches.append(
            self._pool_branch(inputs, is_training, count[11], "max"))

      with tf.variable_scope("final_conv"):
        w = create_weight("w", [1, 1, total_out_channels, out_filters])
        if self.data_format == "NHWC":
          branches = tf.concat(branches, axis=3)
        elif self.data_format == "NCHW":
          branches = tf.concat(branches, axis=1)
        out = tf.nn.relu(branches)
        shape = branches.get_shape()
        self.relu_size+=shape[1].value*shape[2].value*shape[3].value
        out = tf.nn.conv2d(out, w, [1, 1, 1, 1], "SAME",
                           data_format=self.data_format)
        out = batch_norm(out, is_training, data_format=self.data_format)

    if layer_id > 0:
      if self.whole_channels:
        skip_start = start_idx + 1
      else:
        skip_start = start_idx + 2 * self.num_branches
      skip = self.sample_arc[skip_start: skip_start + layer_id]
      total_skip_channels = np.sum(skip) + 1

      res_layers = []
      for i in range(layer_id):
        if skip[i] == 1:
          res_layers.append(prev_layers[i])
      prev = res_layers + [out]

      if self.data_format == "NHWC":
        prev = tf.concat(prev, axis=3)
      elif self.data_format == "NCHW":
        prev = tf.concat(prev, axis=1)

      out = prev
      with tf.variable_scope("skip"):
        w = create_weight(
          "w", [1, 1, total_skip_channels * out_filters, out_filters])
        ## removing skip connection ReLUs
        #out = tf.nn.relu(out)
        out = tf.nn.conv2d(
          out, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
        out = batch_norm(out, is_training, data_format=self.data_format)

    return out
예제 #12
0
  def _enas_layer(self, layer_id, prev_layers, start_idx, out_filters, is_training):
    """
    Ags:
      layer_id: current layer
      prev_layers: cache of previous layers. for skip connections
      start_idx: where to start looking at. technically, we can infer this
        from layer_id, but why bother...
      is_training: for batch_norm
    """

    inputs = prev_layers[-1]
    if self.whole_channels:
      if self.data_format == "NHWC":
        inp_h = inputs.get_shape()[1].value
        inp_w = inputs.get_shape()[2].value
        inp_c = inputs.get_shape()[3].value
      elif self.data_format == "NCHW":
        inp_c = inputs.get_shape()[1].value
        inp_h = inputs.get_shape()[2].value
        inp_w = inputs.get_shape()[3].value

      count = self.sample_arc[start_idx]
      branches = {}

	  # client online cost
      counts = {}
      counts[tf.equal(count, 0)] = lambda: tf.constant(3)
      counts[tf.equal(count, 1)] = lambda: tf.constant(3)
      counts[tf.equal(count, 2)] = lambda: tf.constant(5)
      counts[tf.equal(count, 3)] = lambda: tf.constant(5)
      filter_size = tf.case(counts, exclusive=True)

      with tf.variable_scope("branch_0"):
        y = self._conv_branch(inputs, 3, is_training, out_filters, out_filters,
                              start_idx=0)
        branches[tf.equal(count, 0)] = lambda: y
      with tf.variable_scope("branch_1"):
        y = self._conv_branch(inputs, 3, is_training, out_filters, out_filters,
                              start_idx=0, separable=True)
        branches[tf.equal(count, 1)] = lambda: y
      with tf.variable_scope("branch_2"):
        y = self._conv_branch(inputs, 5, is_training, out_filters, out_filters,
                              start_idx=0)
        branches[tf.equal(count, 2)] = lambda: y
      with tf.variable_scope("branch_3"):
        y = self._conv_branch(inputs, 5, is_training, out_filters, out_filters,
                              start_idx=0, separable=True)
        branches[tf.equal(count, 3)] = lambda: y
      if self.num_branches >= 5:
        with tf.variable_scope("branch_4"):
          y = self._pool_branch(inputs, is_training, out_filters, "avg",
                                start_idx=0)
        branches[tf.equal(count, 4)] = lambda: y
      if self.num_branches >= 6:
        with tf.variable_scope("branch_5"):
          y = self._pool_branch(inputs, is_training, out_filters, "max",
                                start_idx=0)
        branches[tf.equal(count, 5)] = lambda: y
      #out = tf.case(branches, default=lambda: tf.constant(0, tf.float32),
      #              exclusive=True)

      if self.data_format == "NHWC":
        #out.set_shape([None, inp_h, inp_w, out_filters])
        out_shape = [self.batch_size, inp_h, inp_w, out_filters]
      elif self.data_format == "NCHW":
        #out.set_shape([None, out_filters, inp_h, inp_w])
        out_shape = [self.batch_size, out_filters, inp_h, inp_w]

      out = tf.case(branches, default=lambda: tf.constant(0, tf.float32, shape=out_shape),
                    exclusive=True)

    else:
      count = self.sample_arc[start_idx:start_idx + 2 * self.num_branches]
      branches = []
      with tf.variable_scope("branch_0"):
        branches.append(self._conv_branch(inputs, 3, is_training, count[1],
                                          out_filters, start_idx=count[0]))
      with tf.variable_scope("branch_1"):
        branches.append(self._conv_branch(inputs, 3, is_training, count[3],
                                          out_filters, start_idx=count[2],
                                          separable=True))
      with tf.variable_scope("branch_2"):
        branches.append(self._conv_branch(inputs, 5, is_training, count[5],
                                          out_filters, start_idx=count[4]))
      with tf.variable_scope("branch_3"):
        branches.append(self._conv_branch(inputs, 5, is_training, count[7],
                                          out_filters, start_idx=count[6],
                                          separable=True))
      if self.num_branches >= 5:
        with tf.variable_scope("branch_4"):
          branches.append(self._pool_branch(inputs, is_training, count[9],
                                            "avg", start_idx=count[8]))
      if self.num_branches >= 6:
        with tf.variable_scope("branch_5"):
          branches.append(self._pool_branch(inputs, is_training, count[11],
                                            "max", start_idx=count[10]))

      with tf.variable_scope("final_conv"):
        w = create_weight("w", [self.num_branches * out_filters, out_filters])
        w_mask = tf.constant([False] * (self.num_branches * out_filters), tf.bool)
        new_range = tf.range(0, self.num_branches * out_filters, dtype=tf.int32)
        for i in range(self.num_branches):
          start = out_filters * i + count[2 * i]
          new_mask = tf.logical_and(
            start <= new_range, new_range < start + count[2 * i + 1])
          w_mask = tf.logical_or(w_mask, new_mask)
        w = tf.boolean_mask(w, w_mask)
        w = tf.reshape(w, [1, 1, -1, out_filters])

        inp = prev_layers[-1]
        if self.data_format == "NHWC":
          branches = tf.concat(branches, axis=3)
        elif self.data_format == "NCHW":
          branches = tf.concat(branches, axis=1)
          N = tf.shape(inp)[0]
          H = inp.get_shape()[2].value
          W = inp.get_shape()[3].value
          branches = tf.reshape(branches, [N, -1, H, W])
        out = tf.nn.conv2d(
          branches, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
        out = batch_norm(out, is_training, data_format=self.data_format)
        out = tf.nn.relu(out)

    if layer_id > 0:
      if self.whole_channels:
        skip_start = start_idx + 1
      else:
        skip_start = start_idx + 2 * self.num_branches
      skip = self.sample_arc[skip_start: skip_start + layer_id]


      with tf.variable_scope("skip"):
        res_layers = []
        for i in range(layer_id):
          res_layers.append(tf.cond(tf.equal(skip[i], 1),
                                    lambda: prev_layers[i],
                                    lambda: tf.zeros_like(prev_layers[i])))
        res_layers.append(out)
        out = tf.add_n(res_layers)
        out = batch_norm(out, is_training, data_format=self.data_format)

    return out