def plotFirstTacROC(dataset): import matplotlib.pylab as plt from os.path import join from src.utils import PROJECT_DIR plt.figure(figsize=(6, 6)) time_sampler = TimeSerieSampler(n_time_points=12) evaluator = Evaluator() time_series_idx = 0 methods = { "cross_correlation": "Cross corr. ", "kendall": "Kendall ", "symbol_mutual": "Symbol MI ", "symbol_similarity": "Symbol sim.", } for method in methods: print method predictor = SingleSeriesPredictor(good_methods[method], time_sampler) prediction = predictor.predictAllInstancesCombined(dataset, time_series_idx) roc_auc, fpr, tpr = evaluator.evaluate(prediction) plt.plot(fpr, tpr, label=methods[method] + " (auc = %0.3f)" % roc_auc) plt.legend(loc="lower right") plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.grid() plt.savefig(join(PROJECT_DIR, "output", "firstTACROC.pdf"))
def plotFirstTacROC(dataset): import matplotlib.pylab as plt from os.path import join from src.utils import PROJECT_DIR plt.figure(figsize=(6, 6)) time_sampler = TimeSerieSampler(n_time_points=12) evaluator = Evaluator() time_series_idx = 0 methods = { 'cross_correlation': 'Cross corr. ', 'kendall': 'Kendall ', 'symbol_mutual': 'Symbol MI ', 'symbol_similarity': 'Symbol sim.' } for method in methods: print method predictor = SingleSeriesPredictor(good_methods[method], time_sampler) prediction = predictor.predictAllInstancesCombined( dataset, time_series_idx) roc_auc, fpr, tpr = evaluator.evaluate(prediction) plt.plot(fpr, tpr, label=methods[method] + ' (auc = %0.3f)' % roc_auc) plt.legend(loc="lower right") plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.grid() plt.savefig(join(PROJECT_DIR, 'output', 'firstTACROC.pdf'))
def evaluateAllMethods(dataset): time_sampler = TimeSerieSampler(n_time_points=15) with open(path.join(OUTPUT_DIR, "evaluation", "presentation_1A.csv"), "w") as pout: pout.write("," + ",".join(five_pin_setups) + "\n") for method in good_methods: print method pout.write(method) predictor = SingleSeriesPredictor(good_methods[method], time_sampler) evaluator = Evaluator() for time_series_idx in range(5): prediction = predictor.predictAllInstancesCombined(dataset, time_series_idx) roc_auc, fpr, tpr = evaluator.evaluate(prediction) pout.write(", {0:.3f}".format(roc_auc)) pout.write("\n")
def evaluateNumTimepoints(dataset): ntp = [e for e in range(4, 15)] ntp.extend([e for e in range(15, 20, 2)]) methods = ["cross_correlation", "kendall", "symbol_mutual"] evaluator = Evaluator() time_series_idx = 0 res = [[] for m in methods] for n_time_points in ntp: print n_time_points time_sampler = TimeSerieSampler(n_time_points=n_time_points) for i, method in enumerate(methods): predictor = SingleSeriesPredictor(good_methods[method], time_sampler) prediction = predictor.predictAllInstancesCombined(dataset, time_series_idx) roc_auc, fpr, tpr = evaluator.evaluate(prediction) res[i].append(roc_auc) print res
def evaluateAllMethods(dataset): time_sampler = TimeSerieSampler(n_time_points=15) with open(path.join(OUTPUT_DIR, "evaluation", "presentation_1A.csv"), "w") as pout: pout.write(',' + ','.join(five_pin_setups) + '\n') for method in good_methods: print method pout.write(method) predictor = SingleSeriesPredictor(good_methods[method], time_sampler) evaluator = Evaluator() for time_series_idx in range(5): prediction = predictor.predictAllInstancesCombined( dataset, time_series_idx) roc_auc, fpr, tpr = evaluator.evaluate(prediction) pout.write(', {0:.3f}'.format(roc_auc)) pout.write('\n')
def evaluateNumTimepoints(dataset): ntp = [e for e in range(4, 15)] ntp.extend([e for e in range(15, 20, 2)]) methods = ['cross_correlation', 'kendall', 'symbol_mutual'] evaluator = Evaluator() time_series_idx = 0 res = [[] for m in methods] for n_time_points in ntp: print n_time_points time_sampler = TimeSerieSampler(n_time_points=n_time_points) for i, method in enumerate(methods): predictor = SingleSeriesPredictor(good_methods[method], time_sampler) prediction = predictor.predictAllInstancesCombined( dataset, time_series_idx) roc_auc, fpr, tpr = evaluator.evaluate(prediction) res[i].append(roc_auc) print res