def generate_ground_literals(self): '''Generates the ground atoms from p_i,p_a,target and constants ''' p = list(set(self.language_frame.p_e + self.program_template.p_a + [self.language_frame.target])) constants = self.language_frame.constants # Build constant matrix constant_matrix = [] for const1 in constants: for const2 in constants: term1 = Term(False, const1) term2 = Term(False, const2) constant_matrix.append([term1, term2]) # Build ground, non negated, atoms ground_positive_literals = [] ground_positive_literals.append(Literal(Atom([], '⊥'), False)) added_literals = {} for pred in p: for term in constant_matrix: literal = Literal(Atom([term[i] for i in range(0, pred.arity)], pred.predicate), False) if literal not in added_literals: ground_positive_literals.append(literal) added_literals[literal] = 1 ground_literals = [] ground_literals += ground_positive_literals if self.uses_negation: for literal in ground_positive_literals: #if atom == Atom([],'⊥'): # continue negative_literal = literal.__copy__() negative_literal.negate() ground_literals.append(negative_literal) return ground_literals
def innocent(): ''' Learn the target predicate of innocent(X) which is true if X is not guilty ''' constants = [ 'Paul', 'Randy', 'Rachel', 'Bob', 'Alice', 'Stan', 'Kyle', 'Peter', 'Tony', 'Monica' ] B_atom = [ Atom([Term(False, 'Bob')], 'guilty'), Atom([Term(False, 'Randy')], 'guilty'), Atom([Term(False, 'Peter')], 'guilty'), Atom([Term(False, 'Alice')], 'guilty'), Atom([Term(False, 'Monica')], 'guilty') ] B = [Literal(atom, False) for atom in B_atom] P_atom = [ Atom([Term(False, 'Paul')], 'target'), Atom([Term(False, 'Rachel')], 'target'), Atom([Term(False, 'Kyle')], 'target'), Atom([Term(False, 'Tony')], 'target'), Atom([Term(False, 'Stan')], 'target') ] P = [Literal(atom, False) for atom in P_atom] N_atom = [ Atom([Term(False, 'Bob')], 'target'), Atom([Term(False, 'Randy')], 'target'), Atom([Term(False, 'Peter')], 'target'), Atom([Term(False, 'Alice')], 'target'), Atom([Term(False, 'Monica')], 'target') ] N = [Literal(atom, False) for atom in N_atom] term_x_0 = Term(True, 'X_0') p_e = [Literal(Atom([term_x_0], 'guilty'), False)] p_a = [] target = Literal(Atom([term_x_0], 'target'), False) # Define rules for intensional predicates p_a_rule = (None, None) target_rule = (Rule_Template_Negation(0, False, True), None) rules = {target: target_rule} language_frame = Language_Frame(target, p_e, constants) program_template = Program_Template(p_a, rules, 10) # program_template = Program_Template(p_a, rules, 300) snafdilp = SNAFDILP(language_frame, B, P, N, program_template) return snafdilp.train(steps=200)
def even_numbers_negation_test(): B_atom = [Atom([Term(False, '0')], 'zero')] + \ [Atom([Term(False, str(i)), Term(False, str(i + 1))], 'succ') for i in range(0, 20)] B = [Literal(atom, False) for atom in B_atom] P_atom = [Atom([Term(False, str(i))], 'target') for i in range(0, 21, 2)] P = [Literal(atom, False) for atom in P_atom] N_atom = [Atom([Term(False, str(i))], 'target') for i in range(1, 21, 2)] N = [Literal(atom, False) for atom in N_atom] term_x_0 = Term(True, 'X_0') term_x_1 = Term(True, 'X_1') p_e = [ Literal(Atom([term_x_0], 'zero'), False), Literal(Atom([term_x_0, term_x_1], 'succ'), False) ] p_a = [Literal(Atom([term_x_0, term_x_1], 'pred'), False)] target = Literal(Atom([term_x_0], 'target'), False) constants = [str(i) for i in range(0, 21)] # Define rules for intensional predicates p_a_rule = (Rule_Template_Negation(1, False, False), None) target_rule = (Rule_Template_Negation(0, False, True), Rule_Template_Negation(1, True, False)) rules = {p_a[0]: p_a_rule, target: target_rule} langage_frame = Language_Frame(target, p_e, constants) program_template = Program_Template(p_a, rules, 10) #program_template = Program_Template(p_a, rules, 300) snafdilp = SNAFDILP(langage_frame, B, P, N, program_template) return snafdilp.train(steps=300)
def odd(): ''' Learn the target predicate of odd(X) which is true if X is an odd number ''' B_atom = [Atom([Term(False, '0')], 'zero')] + \ [Atom([Term(False, str(i)), Term(False, str(i + 1))], 'succ') for i in range(0, 20)] B = [Literal(atom, False) for atom in B_atom] # Odd numbers P_atom = [Atom([Term(False, str(i))], 'target') for i in range(1, 21, 2)] P = [Literal(atom, False) for atom in P_atom] # Even numbers N_atom = [Atom([Term(False, str(i))], 'target') for i in range(0, 21, 2)] N = [Literal(atom, False) for atom in N_atom] term_x_0 = Term(True, 'X_0') term_x_1 = Term(True, 'X_1') p_e = [ Literal(Atom([term_x_0], 'zero'), False), Literal(Atom([term_x_0, term_x_1], 'succ'), False) ] p_a = [ Literal(Atom([term_x_0, term_x_1], 'succ2'), False), Literal(Atom([term_x_0], 'even'), False) ] target = Literal(Atom([term_x_0], 'target'), False) constants = [str(i) for i in range(0, 21)] # Define rules for intensional predicates succ2_rule = (Rule_Template_Negation(1, False, False), None) even_rule = (Rule_Template_Negation(0, False, False), Rule_Template_Negation(1, True, False)) target_rule = (Rule_Template_Negation(0, True, True), None) rules = {p_a[0]: succ2_rule, p_a[1]: even_rule, target: target_rule} language_frame = Language_Frame(target, p_e, constants) program_template = Program_Template(p_a, rules, 10) # program_template = Program_Template(p_a, rules, 300) snafdilp = SNAFDILP(language_frame, B, P, N, program_template) return snafdilp.train(steps=400)
def is_cyclic(): ''' Learn the target predicate no_negative_cycle(X). The predicate checks if a given node in a graph is part of a negative cycle (cycle with at least one negative edge). ''' constants = ['a', 'b', 'c', 'd', 'e', 'f'] ### (B, P, N) Number 1 B_atom = [ Atom([Term(False, 'a'), Term(False, 'b')], 'edge'), Atom([Term(False, 'b'), Term(False, 'c')], 'edge'), Atom([Term(False, 'c'), Term(False, 'a')], 'edge'), Atom([Term(False, 'b'), Term(False, 'd')], 'edge'), Atom([Term(False, 'd'), Term(False, 'e')], 'edge'), Atom([Term(False, 'd'), Term(False, 'f')], 'edge'), Atom([Term(False, 'f'), Term(False, 'e')], 'edge'), Atom([Term(False, 'e'), Term(False, 'f')], 'edge') ] B = [Literal(atom, False) for atom in B_atom] P_atom = [ Atom([Term(False, 'a')], 'target'), Atom([Term(False, 'b')], 'target'), Atom([Term(False, 'c')], 'target'), Atom([Term(False, 'e')], 'target'), Atom([Term(False, 'f')], 'target') ] P = [Literal(atom, False) for atom in P_atom] N_atom = [Atom([Term(False, 'd')], 'target')] N = [Literal(atom, False) for atom in N_atom] term_x_0 = Term(True, 'X_0') term_x_1 = Term(True, 'X_1') term_x_2 = Term(True, 'X_2') p_e = [Literal(Atom([term_x_0, term_x_1], 'edge'), False)] p_a = [Literal(Atom([term_x_0, term_x_2], 'pred'), False)] target = Literal(Atom([term_x_0], 'target'), False) # Define rules for intensional predicates p_a_rule = [(Rule_Template_Negation(0, False, False), Rule_Template_Negation(1, True, False))] target_rule = (Rule_Template_Negation(0, True, False), None) rules = {p_a[0]: p_a_rule[0], target: target_rule} language_frame = Language_Frame(target, p_e, constants) program_template = Program_Template(p_a, rules, 10) # program_template = Program_Template(p_a, rules, 300) dilp = DILP(language_frame, B, P, N, program_template) return dilp.train(steps=300)
def x_c(clause: Clause, dict_valuation: dict, constants: list): ''' Arguments: clause {Clause} -- clause to generate f_c valuations {list} -- valuation list constants {list} -- constants ''' if clause == None: return np.zeros((len(dict_valuation), 1, 2), dtype=int) constant_terms = [Term(False, constant) for constant in constants] head_variables = clause.head.variables variables = [Term(True, variable) for variable in clause.variables] existential_variable = len(variables) - len(head_variables) comb = [] for var in variables: temp = [] for c in constant_terms: temp.append((var, c)) comb.append(temp) w = np.power( len(constants), existential_variable) x_c = np.zeros((len(dict_valuation), w, 2), dtype=int) derived_valuation = defaultdict(list) for elm in product(*comb): subs = {a[0]: a[1] for a in elm} substituted_head = Atom( [subs[term] for term in clause.head.terms], clause.head.predicate) derived = [] for literal in clause.body: substituted_body_atom = Atom([subs[term] for term in literal.terms], literal.predicate) substituted_body = Literal(substituted_body_atom, literal.negated) derived.append(int(dict_valuation[substituted_body])) if derived not in derived_valuation[substituted_head]: # BIG MAYBE derived_valuation[substituted_head].append(derived) for literal in derived_valuation: for i in range(0, len(derived_valuation[literal])): x_c[dict_valuation[literal], i, 0] = 0 x_c[dict_valuation[literal], i, 0] = derived_valuation[literal][i][0] x_c[dict_valuation[literal], i, 1] = derived_valuation[literal][i][1] return x_c
def greater_than(): ''' Learn the target predicate greater_than(X,Y) which is true if X is greater than Y. The aim is to mirror the less_than predicate use of negation as failure. ''' constants = [str(i) for i in range(0, 10)] B_atom = [Atom([Term(False, '0')], 'zero')] + \ [Atom([Term(False, str(i)), Term(False, str(i + 1))], 'succ') for i in range(0, 9)] B = [Literal(atom, False) for atom in B_atom] P_atom = [] N_atom = [] for i in range(0, 10): for j in range(0, 10): if j > i: P_atom.append( Atom([Term(False, str(j)), Term(False, str(i))], 'target')) else: N_atom.append( Atom([Term(False, str(j)), Term(False, str(i))], 'target')) P = [Literal(atom, False) for atom in P_atom] N = [Literal(atom, False) for atom in N_atom] term_x_0 = Term(True, 'X_0') term_x_1 = Term(True, 'X_1') p_e = [ Literal(Atom([term_x_0], 'zero'), False), Literal(Atom([term_x_0, term_x_1], 'succ'), False) ] p_a = [Literal(Atom([term_x_0, term_x_1], 'pred'), False)] target = Atom([term_x_0, term_x_1], 'target') # Define rules for intensional predicates p_a_rule = [(Rule_Template_Negation(0, False, False), Rule_Template_Negation(1, True, False))] target_rule = (Rule_Template_Negation(0, True, True), None) rules = {p_a[0]: p_a_rule[0], target: target_rule} langage_frame = Language_Frame(target, p_e, constants) program_template = Program_Template(p_a, rules, 10) snafdilp = SNAFDILP(langage_frame, B, P, N, program_template) return snafdilp.train(steps=500)
def can_fly(): ''' Learn the target predicate of can_fly(X) which is true if X is a bird, but not an abnormal bird ''' constants = [ 'bluebird', 'penguin', 'ostrich', 'blackbird', 'robin', 'sparrow', 'starling', 'chicken', 'kiwi', 'steamerduck', 'kakapo', 'takahe', 'weka', 'pigeon', 'swan', 'duck', 'goldfinch', 'woodpecker', 'bluetit', 'greattit', 'puddle', 'forrestcat', 'pitbull', 'goldenretriever', 'perser', 'bengal', 'siamese', 'sphynx', 'ragdoll', 'savannah', 'sibiriancat', 'greyhound', 'malteser', 'dobermann', 'rottweiler', 'bostonterrier', 'scottishfold', 'exotic', 'russianblue' ] B_atom = [ # birds Atom([Term(False, 'bluebird')], 'is_bird'), Atom([Term(False, 'woodpecker')], 'is_bird'), Atom([Term(False, 'penguin')], 'is_bird'), Atom([Term(False, 'bluetit')], 'is_bird'), Atom([Term(False, 'greattit')], 'is_bird'), Atom([Term(False, 'ostrich')], 'is_bird'), Atom([Term(False, 'blackbird')], 'is_bird'), Atom([Term(False, 'robin')], 'is_bird'), Atom([Term(False, 'sparrow')], 'is_bird'), Atom([Term(False, 'starling')], 'is_bird'), Atom([Term(False, 'chicken')], 'is_bird'), Atom([Term(False, 'kiwi')], 'is_bird'), Atom([Term(False, 'steamerduck')], 'is_bird'), Atom([Term(False, 'kakapo')], 'is_bird'), Atom([Term(False, 'takahe')], 'is_bird'), Atom([Term(False, 'weka')], 'is_bird'), Atom([Term(False, 'pigeon')], 'is_bird'), Atom([Term(False, 'swan')], 'is_bird'), Atom([Term(False, 'duck')], 'is_bird'), Atom([Term(False, 'goldfinch')], 'is_bird'), # abnormal birds Atom([Term(False, 'penguin')], 'abnormal_bird'), Atom([Term(False, 'ostrich')], 'abnormal_bird'), Atom([Term(False, 'chicken')], 'abnormal_bird'), Atom([Term(False, 'kiwi')], 'abnormal_bird'), Atom([Term(False, 'steamerduck')], 'abnormal_bird'), Atom([Term(False, 'kakapo')], 'abnormal_bird'), Atom([Term(False, 'takahe')], 'abnormal_bird'), Atom([Term(False, 'weka')], 'abnormal_bird') ] B = [Literal(atom, False) for atom in B_atom] P_atom = [ Atom([Term(False, 'bluebird')], 'target'), Atom([Term(False, 'blackbird')], 'target'), Atom([Term(False, 'robin')], 'target'), Atom([Term(False, 'sparrow')], 'target'), Atom([Term(False, 'starling')], 'target'), Atom([Term(False, 'pigeon')], 'target'), Atom([Term(False, 'swan')], 'target'), Atom([Term(False, 'duck')], 'target'), Atom([Term(False, 'goldfinch')], 'target'), Atom([Term(False, 'woodpecker')], 'target'), Atom([Term(False, 'bluetit')], 'target'), Atom([Term(False, 'greattit')], 'target') ] P = [Literal(atom, False) for atom in P_atom] N_atom = [ Atom([Term(False, 'penguin')], 'target'), Atom([Term(False, 'chicken')], 'target'), Atom([Term(False, 'kiwi')], 'target'), Atom([Term(False, 'steamerduck')], 'target'), Atom([Term(False, 'takahe')], 'target'), Atom([Term(False, 'puddle')], 'target'), Atom([Term(False, 'siamese')], 'target'), Atom([Term(False, 'forrestcat')], 'target'), Atom([Term(False, 'pitbull')], 'target'), Atom([Term(False, 'sphynx')], 'target'), Atom([Term(False, 'sibiriancat')], 'target'), Atom([Term(False, 'greyhound')], 'target'), Atom([Term(False, 'russianblue')], 'target') ] N = [Literal(atom, False) for atom in N_atom] term_x_0 = Term(True, 'X_0') p_e = [ Literal(Atom([term_x_0], 'is_bird'), False), Literal(Atom([term_x_0], 'abnormal_bird'), False) ] p_a = [] target = Literal(Atom([term_x_0], 'target'), False) # Define rules for intensional predicates p_a_rule = (None, None) target_rule = (Rule_Template_Negation(0, False, True), None) rules = {target: target_rule} language_frame = Language_Frame(target, p_e, constants) program_template = Program_Template(p_a, rules, 10) # program_template = Program_Template(p_a, rules, 300) snafdilp = SNAFDILP(language_frame, B, P, N, program_template) return snafdilp.train(steps=200)
def orphan(): ''' Learn the target predicate of orphan(X) which is true if X has no parent ''' constants = [ 'Paul', 'Randy', 'Rachel', 'Bob', 'Alice', 'Steve', 'Frank', 'Julia', 'Stan', 'Kyle', 'Peter', 'Tony', 'Monica', 'Carl', 'Dolores', 'Tommy', 'Pedro', 'Will', 'Sophie', 'Eric', 'Jon', 'Robert', 'Sansa', 'Arya', 'Tormund', 'Mance' ] # parent(X, Y) is true if X is the father of Y B_atom = [ Atom([Term(False, 'Bob'), Term(False, 'Paul')], 'parent'), Atom([Term(False, 'Bob'), Term(False, 'Alice')], 'parent'), Atom([Term(False, 'Randy'), Term(False, 'Tony')], 'parent'), Atom([Term(False, 'Randy'), Term(False, 'Stan')], 'parent'), Atom([Term(False, 'Peter'), Term(False, 'Kyle')], 'parent'), Atom([Term(False, 'Alice'), Term(False, 'Kyle')], 'parent'), Atom([Term(False, 'Tony'), Term(False, 'Carl')], 'parent'), Atom([Term(False, 'Dolores'), Term(False, 'Tony')], 'parent'), Atom([Term(False, 'Stan'), Term(False, 'Julia')], 'parent'), Atom([Term(False, 'Julia'), Term(False, 'Tommy')], 'parent'), Atom([Term(False, 'Kyle'), Term(False, 'Tommy')], 'parent'), Atom([Term(False, 'Carl'), Term(False, 'Sophie')], 'parent'), Atom([Term(False, 'Carl'), Term(False, 'Eric')], 'parent'), Atom([Term(False, 'Tommy'), Term(False, 'Arya')], 'parent'), Atom([Term(False, 'Tommy'), Term(False, 'Tormund')], 'parent'), Atom([Term(False, 'Tommy'), Term(False, 'Mance')], 'parent') ] B = [Literal(atom, False) for atom in B_atom] P_atom = [ Atom([Term(False, 'Randy')], 'target'), Atom([Term(False, 'Bob')], 'target'), Atom([Term(False, 'Peter')], 'target'), Atom([Term(False, 'Rachel')], 'target'), Atom([Term(False, 'Monica')], 'target'), Atom([Term(False, 'Dolores')], 'target'), Atom([Term(False, 'Steve')], 'target'), Atom([Term(False, 'Frank')], 'target'), Atom([Term(False, 'Pedro')], 'target'), Atom([Term(False, 'Will')], 'target'), Atom([Term(False, 'Jon')], 'target'), Atom([Term(False, 'Robert')], 'target'), Atom([Term(False, 'Sansa')], 'target'), ] P = [Literal(atom, False) for atom in P_atom] N_atom = [ Atom([Term(False, 'Paul')], 'target'), Atom([Term(False, 'Alice')], 'target'), Atom([Term(False, 'Kyle')], 'target'), Atom([Term(False, 'Tony')], 'target'), Atom([Term(False, 'Stan')], 'target'), Atom([Term(False, 'Carl')], 'target'), Atom([Term(False, 'Julia')], 'target'), Atom([Term(False, 'Tommy')], 'target'), Atom([Term(False, 'Sophie')], 'target'), Atom([Term(False, 'Eric')], 'target'), Atom([Term(False, 'Arya')], 'target'), Atom([Term(False, 'Tormund')], 'target'), Atom([Term(False, 'Mance')], 'target') ] N = [Literal(atom, False) for atom in N_atom] term_x_0 = Term(True, 'X_0') term_x_1 = Term(True, 'X_1') p_e = [Literal(Atom([term_x_0, term_x_1], 'parent'), False)] p_a = [] target = Literal(Atom([term_x_0], 'target'), False) # Define rules for intensional predicates p_a_rule = (None, None) target_rule = (Rule_Template_Negation(1, False, True), None) rules = {target: target_rule} language_frame = Language_Frame(target, p_e, constants) program_template = Program_Template(p_a, rules, 10) # program_template = Program_Template(p_a, rules, 300) snafdilp = SNAFDILP(language_frame, B, P, N, program_template) return snafdilp.train(steps=200)
def has_roommate(): ''' Learn the target predicate of has_roommate(X, Y) which is true if there exists a person Y that X is married to and Y is not a researcher. ''' constants = [ 'Paul', 'Randy', 'Rachel', 'Bob', 'Alice', 'Steve', 'Frank', 'Julia', 'Stan', 'Kyle', 'Peter', 'Tony', 'Monica', 'Carl', 'Dolores', 'Tommy', 'Pedro', 'Will', 'Sophie', 'Eric', 'Jon', 'Robert', 'Sansa', 'Arya', 'Tormund', 'Mance' ] # married(X,Y) with symmetric closure B_atom = [ Atom([Term(False, 'Bob'), Term(False, 'Rachel')], 'married'), Atom([Term(False, 'Rachel'), Term(False, 'Bob')], 'married'), Atom([Term(False, 'Randy'), Term(False, 'Alice')], 'married'), Atom([Term(False, 'Alice'), Term(False, 'Randy')], 'married'), Atom([Term(False, 'Steve'), Term(False, 'Julia')], 'married'), Atom([Term(False, 'Julia'), Term(False, 'Steve')], 'married'), Atom( [Term(False, 'Frank'), Term(False, 'Monica')], 'married'), Atom([Term(False, 'Monica'), Term(False, 'Frank')], 'married'), Atom([Term(False, 'Stan'), Term(False, 'Dolores')], 'married'), Atom([Term(False, 'Dolores'), Term(False, 'Frank')], 'married'), Atom([Term(False, 'Will'), Term(False, 'Sophie')], 'married'), Atom( [Term(False, 'Sophie'), Term(False, 'Will')], 'married'), Atom([Term(False, 'Eric'), Term(False, 'Arya')], 'married'), Atom([Term(False, 'Arya'), Term(False, 'Eric')], 'married'), # researcher(X) Atom([Term(False, 'Robert')], 'researcher'), Atom([Term(False, 'Eric')], 'researcher'), Atom([Term(False, 'Bob')], 'researcher'), Atom([Term(False, 'Frank')], 'researcher'), Atom([Term(False, 'Monica')], 'researcher'), Atom([Term(False, 'Mance')], 'researcher'), Atom([Term(False, 'Jon')], 'researcher'), Atom([Term(False, 'Tormund')], 'researcher'), Atom([Term(False, 'Sansa')], 'researcher') ] B = [Literal(atom, False) for atom in B_atom] P_atom = [ Atom([Term(False, 'Randy')], 'target'), Atom([Term(False, 'Alice')], 'target'), Atom([Term(False, 'Steve')], 'target'), Atom([Term(False, 'Julia')], 'target'), Atom([Term(False, 'Dolores')], 'target'), Atom([Term(False, 'Stan')], 'target'), Atom([Term(False, 'Will')], 'target'), Atom([Term(False, 'Sophie')], 'target') ] P = [Literal(atom, False) for atom in P_atom] N_atom = [ Atom([Term(False, 'Bob')], 'target'), Atom([Term(False, 'Rachel')], 'target'), Atom([Term(False, 'Frank')], 'target'), Atom([Term(False, 'Monica')], 'target'), Atom([Term(False, 'Kyle')], 'target'), Atom([Term(False, 'Peter')], 'target'), Atom([Term(False, 'Tony')], 'target'), Atom([Term(False, 'Carl')], 'target'), Atom([Term(False, 'Tommy')], 'target'), Atom([Term(False, 'Pedro')], 'target'), Atom([Term(False, 'Tommy')], 'target'), Atom([Term(False, 'Eric')], 'target'), Atom([Term(False, 'Arya')], 'target'), Atom([Term(False, 'Jon')], 'target'), Atom([Term(False, 'Robert')], 'target'), Atom([Term(False, 'Mance')], 'target'), Atom([Term(False, 'Tormund')], 'target') ] N = [Literal(atom, False) for atom in N_atom] term_x_0 = Term(True, 'X_0') term_x_1 = Term(True, 'X_1') p_e = [ Literal(Atom([term_x_0, term_x_1], 'married'), False), Literal(Atom([term_x_0], 'researcher'), False) ] p_a = [Literal(Atom([term_x_0, term_x_1], 'pred'), False)] target = Literal(Atom([term_x_0], 'target'), False) # Define rules for intensional predicates p_a_rule = (Rule_Template_Negation(0, False, True), None) target_rule = (Rule_Template_Negation(1, True, False), None) rules = {p_a[0]: p_a_rule, target: target_rule} language_frame = Language_Frame(target, p_e, constants) program_template = Program_Template(p_a, rules, 10) # program_template = Program_Template(p_a, rules, 300) snafdilp = SNAFDILP(language_frame, B, P, N, program_template) return snafdilp.train(steps=200)
def two_children(): ''' Learn the target predicate of has_at_least_two_children(X). In a directed graph we want to check if a node has at least two children (that are not equal). ''' constants = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] edge_relation = [ Atom([Term(False, 'a'), Term(False, 'b')], 'edge'), Atom([Term(False, 'a'), Term(False, 'c')], 'edge'), Atom([Term(False, 'b'), Term(False, 'd')], 'edge'), Atom([Term(False, 'c'), Term(False, 'd')], 'edge'), Atom([Term(False, 'c'), Term(False, 'e')], 'edge'), Atom([Term(False, 'd'), Term(False, 'e')], 'edge'), Atom([Term(False, 'f'), Term(False, 'a')], 'edge'), Atom([Term(False, 'f'), Term(False, 'b')], 'edge'), Atom([Term(False, 'g'), Term(False, 'e')], 'edge'), Atom([Term(False, 'g'), Term(False, 'c')], 'edge') ] equals_relation = [ Atom([Term(False, x), Term(False, y)], 'equals') for x, y in zip(constants, constants) if x == y ] B_atom = edge_relation + equals_relation B = [Literal(atom, False) for atom in B_atom] P_atom = [ Atom([Term(False, 'a')], 'target'), Atom([Term(False, 'c')], 'target'), Atom([Term(False, 'f')], 'target'), Atom([Term(False, 'g')], 'target') ] P = [Literal(atom, False) for atom in P_atom] N_atom = [ Atom([Term(False, 'b')], 'target'), Atom([Term(False, 'd')], 'target'), Atom([Term(False, 'e')], 'target'), Atom([Term(False, 'h')], 'target') ] N = [Literal(atom, False) for atom in N_atom] term_x_0 = Term(True, 'X_0') term_x_1 = Term(True, 'X_1') term_x_2 = Term(True, 'X_2') p_e = [ Literal(Atom([term_x_0, term_x_1], 'edge'), False), Literal(Atom([term_x_0, term_x_1], 'equals'), False) ] p_a = [Literal(Atom([term_x_0, term_x_2], 'pred'), False)] target = Literal(Atom([term_x_0], 'target'), False) # Define rules for intensional predicates p_a_rule = (Rule_Template_Negation(1, False, True), None) target_rule = (Rule_Template_Negation(1, True, False), None) rules = {p_a[0]: p_a_rule, target: target_rule} language_frame = Language_Frame(target, p_e, constants) program_template = Program_Template(p_a, rules, 10) # program_template = Program_Template(p_a, rules, 300) snafdilp = SNAFDILP(language_frame, B, P, N, program_template) return snafdilp.train(steps=300)
def not_grandparent(): ''' Learn the target predicate not_grandparent(X,Y) which is true if X is not the grapndparent of Y. ''' constants = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'] B_atom = [ Atom([Term(False, 'a'), Term(False, 'b')], 'mother'), Atom([Term(False, 'i'), Term(False, 'a')], 'father'), Atom([Term(False, 'a'), Term(False, 'b')], 'father'), Atom([Term(False, 'a'), Term(False, 'c')], 'father'), Atom([Term(False, 'b'), Term(False, 'd')], 'father'), Atom([Term(False, 'b'), Term(False, 'e')], 'mother'), Atom([Term(False, 'c'), Term(False, 'f')], 'mother'), Atom([Term(False, 'c'), Term(False, 'g')], 'mother'), Atom([Term(False, 'f'), Term(False, 'h')], 'mother') ] B = [Literal(atom, False) for atom in B_atom] N_atom = [ Atom([Term(False, 'i'), Term(False, 'b')], 'target'), Atom([Term(False, 'i'), Term(False, 'c')], 'target'), Atom([Term(False, 'a'), Term(False, 'd')], 'target'), Atom([Term(False, 'a'), Term(False, 'e')], 'target'), Atom([Term(False, 'a'), Term(False, 'f')], 'target'), Atom([Term(False, 'a'), Term(False, 'g')], 'target'), Atom([Term(False, 'c'), Term(False, 'h')], 'target') ] possible_target_atoms = [ Atom([Term(False, x), Term(False, y)], 'target') for x, y in itertools.product(constants, constants) ] P_atom = [] for atom in possible_target_atoms: if atom not in N_atom: c1 = atom.terms[0].name c2 = atom.terms[1].name P_atom.append(Atom([Term(False, c1), Term(False, c2)], 'target')) P_atom = random.sample(P_atom, len(N_atom)) P = [Literal(atom, False) for atom in P_atom] N = [Literal(atom, False) for atom in N_atom] term_x_0 = Term(True, 'X_0') term_x_1 = Term(True, 'X_1') term_x_2 = Term(True, 'X_2') p_e = [ Literal(Atom([term_x_0, term_x_1], 'mother'), False), Literal(Atom([term_x_0, term_x_1], 'father'), False) ] p_a = [ Literal(Atom([term_x_0, term_x_1], 'pred1'), False), Literal(Atom([term_x_0, term_x_1], 'pred2'), False) ] target = Literal(Atom([term_x_0, term_x_2], 'target'), False) # Define rules for intensional predicates p_a_rule = [(Rule_Template_Negation(1, True, False), None), (Rule_Template_Negation(0, False, False), Rule_Template_Negation(0, False, False))] target_rule = (Rule_Template_Negation(0, True, True), None) rules = {p_a[0]: p_a_rule[0], p_a[1]: p_a_rule[1], target: target_rule} language_frame = Language_Frame(target, p_e, constants) program_template = Program_Template(p_a, rules, 10) # program_template = Program_Template(p_a, rules, 300) snafdilp = SNAFDILP(language_frame, B, P, N, program_template) return snafdilp.train(steps=300)
def no_ancestor(): ''' Learn the target predicate of ancestor(X) which is true if X has no ancestor ''' constants = [ 'Paul', 'Randy', 'Rachel', 'Bob', 'Alice', 'Stan', 'Kyle', 'Peter', 'Tony', 'Monica', 'Jessica', 'Duncan' ] B_atom = [ Atom([Term(False, 'Bob'), Term(False, 'Paul')], 'parent'), Atom([Term(False, 'Bob'), Term(False, 'Alice')], 'parent'), Atom([Term(False, 'Randy'), Term(False, 'Tony')], 'parent'), Atom([Term(False, 'Randy'), Term(False, 'Stan')], 'parent'), Atom([Term(False, 'Peter'), Term(False, 'Kyle')], 'parent'), Atom([Term(False, 'Alice'), Term(False, 'Kyle')], 'parent'), Atom([Term(False, 'Jessica'), Term(False, 'Bob')], 'parent'), Atom([Term(False, 'Jessica'), Term(False, 'Randy')], 'parent'), Atom([Term(False, 'Matthew'), Term(False, 'Jessica')], 'parent') ] B = [Literal(atom, False) for atom in B_atom] P_atom = [ Atom([Term(False, 'Peter')], 'target'), Atom([Term(False, 'Monica')], 'target'), Atom([Term(False, 'Rachel')], 'target'), Atom([Term(False, 'Jessica')], 'target'), Atom([Term(False, 'Duncan')], 'target'), Atom([Term(False, 'Matthew')], 'target') ] positive_literal_P = [Literal(atom, False) for atom in P_atom] N_atom = [ Atom([Term(False, 'Randy')], 'target'), Atom([Term(False, 'Bob')], 'target'), Atom([Term(False, 'Alice')], 'target'), Atom([Term(False, 'Kyle')], 'target'), Atom([Term(False, 'Tony')], 'target'), Atom([Term(False, 'Stan')], 'target'), Atom([Term(False, 'Paul')], 'target') ] positive_literal_N = [Literal(atom, False) for atom in N_atom] negative_literal_P = [Literal(atom, True) for atom in N_atom] negative_literal_N = [Literal(atom, True) for atom in P_atom] P = positive_literal_P + negative_literal_P N = positive_literal_N + negative_literal_N term_x_0 = Term(True, 'X_0') term_x_1 = Term(True, 'X_1') p_e = [Atom([term_x_0, term_x_1], 'parent')] p_a = [] target = Atom([term_x_0], 'target') # Define rules for intensional predicates p_a_rule = (None, None) target_rule = (Rule_Template_Negation(1, False, True), None) rules = {target: target_rule} langage_frame = Language_Frame(target, p_e, constants) program_template = Program_Template(p_a, rules, 10) #program_template = Program_Template(p_a, rules, 300) dilp = DILP(langage_frame, B, P, N, program_template) dilp.train(steps=200)