예제 #1
0
def action_sw(bg_all):
    #num = 70
    #inx=random.sample(range(0,100),num)
    #neg_inx = list(set(range(100))-set(inx))
    B_0, P_up, P_sw, P_stay, N_up, N_sw, N_stay = get_B_N_P(bg_all)
    B = [Atom([Term(False, str(x[1]))], x[0]) for x in B_0]
    P = [Atom([Term(False, str(id))], 'sw') for id in P_sw]
    N = [Atom([Term(False, str(id))], 'sw') for id in N_sw]
    term_x_0 = Term(True, 'X')
    term_x_1 = Term(True, 'X1')
    p_e = [
        Atom([term_x_0], 'busy'),
        Atom([term_x_0], 'NObusy'),
        Atom([term_x_0], 'side'),
        Atom([term_x_0], 'front'),
        Atom([term_x_0], 'back')
    ]
    p_a = []
    target = Atom([term_x_0], 'sw')
    # target_rule = (Rule_Template(0, False), Rule_Template(1, True))
    target_rule = (Rule_Template(0, False), None)
    rules = {target: target_rule}
    constants = [str(i) for i in range(0, 400)]

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    dilp = DILP(langage_frame, B, P, N, program_template)
    loss, cl_set = dilp.train(steps=51)
    return loss, cl_set
예제 #2
0
def generate_ground_atoms_test():
    term1 = Term(True, 'X_0')
    term2 = Term(True, 'X_1')
    target = Atom([term1, term2], 'r')
    p_e = [Atom([term1, term2], 'p')]
    p_a = [Atom([term1, term2], 'q')]

    rule_template_1 = Rule_Template(0, False)
    rule_template_2 = Rule_Template(1, True)

    language_frame = Language_Frame(target, p_e, set(['a', 'b']))
    program_template = Program_Template(p_a,
                                        (rule_template_1, rule_template_2),
                                        300)

    term_a = Term(False, 'a')
    term_b = Term(False, 'b')
    # Background facts: p(a,a) p(a,b)
    background = [Atom([term_a, term_a], 'p'), Atom([term_a, term_b], 'p')]
    # Positive: p(b,a)
    positive = [Atom([term_b, term_a], 'p')]
    # Negative: p(b,b)
    negative = [Atom([term_b, term_b], 'p')]
    ilp = ILP(language_frame, background, positive, negative, program_template)
    initial_valuation = ilp.convert()
    for valuation in initial_valuation:
        if valuation[0] in background:
            assert valuation[1] == 1
        else:
            assert valuation[1] == 0
예제 #3
0
    def generate_ground_atoms(self):
        '''Generates the ground atoms from p_i,p_a,target and constants
        '''
        p = list(
            set(self.language_frame.p_e + self.program_template.p_a +
                [self.language_frame.target]))
        constants = self.language_frame.constants

        # Build constant matrix
        constant_matrix = []
        for const1 in constants:
            for const2 in constants:
                term1 = Term(False, const1)
                term2 = Term(False, const2)
                constant_matrix.append([term1, term2])
        # Build ground atoms
        ground_atoms = []
        ground_atoms.append(Atom([], '⊥'))
        added_atoms = {}
        for pred in p:
            for term in constant_matrix:
                atom = Atom([term[i] for i in range(0, pred.arity)],
                            pred.predicate)
                if atom not in added_atoms:
                    ground_atoms.append(atom)
                    added_atoms[atom] = 1
        return ground_atoms
예제 #4
0
    def generate_ground_literals(self):
        '''Generates the ground atoms from p_i,p_a,target and constants
        '''
        p = list(set(self.language_frame.p_e +
                     self.program_template.p_a + [self.language_frame.target]))
        constants = self.language_frame.constants

        # Build constant matrix
        constant_matrix = []
        for const1 in constants:
            for const2 in constants:
                term1 = Term(False, const1)
                term2 = Term(False, const2)
                constant_matrix.append([term1, term2])
        # Build ground, non negated, atoms
        ground_positive_literals = []
        ground_positive_literals.append(Literal(Atom([], '⊥'), False))
        added_literals = {}
        for pred in p:
            for term in constant_matrix:
                literal = Literal(Atom([term[i]
                             for i in range(0, pred.arity)], pred.predicate), False)
                if literal not in added_literals:
                    ground_positive_literals.append(literal)
                    added_literals[literal] = 1
        ground_literals = []
        ground_literals += ground_positive_literals
        if self.uses_negation:
            for literal in ground_positive_literals:
                #if atom == Atom([],'⊥'):
                #    continue
                negative_literal = literal.__copy__()
                negative_literal.negate()
                ground_literals.append(negative_literal)
        return ground_literals
예제 #5
0
def action_up_2():
    B_0, P_up, P_sw, P_stay, N_up, N_sw, N_stay = get_B_N_P()
    B = [Atom([Term(False, str(x[1]))], x[0]) for x in B_0]

    N = [Atom([Term(False, str(id))], 'up') for id in P_up]
    P = [Atom([Term(False, str(id))], 'up') for id in N_up]
    term_x_0 = Term(True, 'X')
    term_x_1 = Term(True, 'X1')
    p_e = [
        Atom([term_x_0], 'busy'),
        Atom([term_x_0], 'NObusy'),
        Atom([term_x_0], 'side'),
        Atom([term_x_0], 'front'),
        Atom([term_x_0], 'back')
    ]
    p_a = []

    target = Atom([term_x_0], 'up')
    # target_rule = (Rule_Template(0, False), Rule_Template(1, True))
    target_rule = (Rule_Template(0, False), None)
    rules = {target: target_rule}
    constants = [str(i) for i in range(0, 400)]

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    dilp = DILP(langage_frame, B, P, N, program_template)
    dilp.train(steps=250)
예제 #6
0
    def generate_clauses(self):
        '''Generate the clauses based on brute force approach with no optmization
        '''
        rule_matrix = []
        for rule in self.rules:
            clauses = []
            if (rule.allow_intensional):
                p = self.p_e + self.p_a + [self.target]
                p_i = self.p_a + [self.target]
                intensional_predicates = [atom.predicate for atom in p_i]
            else:
                p = self.p_e
            variables = [
                'X_%d' % i for i in range(0, self.target.arity + rule.v)
            ]
            target_variables = [
                'X_%d' % i for i in range(0, self.target.arity)
            ]

            # NOTE: Only allows 2 predicates and 2 arity maximum
            # TODO: Need for optimizing
            for i1 in range(0, len(p)):
                for v1 in variables:
                    for v2 in variables:
                        for i2 in range(i1, len(p)):
                            for v3 in variables:
                                for v4 in variables:
                                    # unsafe
                                    if not set(target_variables).issubset(
                                        [v1, v2, v3, v4]):
                                        continue
                                    head = Atom([
                                        Term(True, var)
                                        for var in target_variables
                                    ], self.target.predicate)

                                    body1 = Atom(
                                        [Term(True, v1),
                                         Term(True, v2)], p[i1].predicate)
                                    body2 = Atom(
                                        [Term(True, v3),
                                         Term(True, v4)], p[i2].predicate)
                                    clause = Clause(head, [body1, body2])
                                    if head == body1 or head == body2:
                                        continue
                                    # NOTE: Based on appendix requires to have a intensional predicate
                                    if rule.allow_intensional and not (
                                            body1.predicate
                                            in intensional_predicates
                                            or body2.predicate
                                            in intensional_predicates):
                                        continue
                                    # duplicate
                                    if clause not in clauses:
                                        clauses.append(clause)
            print(clauses)
            rule_matrix.append(clauses)
        return rule_matrix
예제 #7
0
def optimized_rule_test():
    rule_template_1 = Rule_Template(0, False)
    rule_template_2 = Rule_Template(1, True)
    target = Atom([Term(True, 'X_0'), Term(True, 'X_1')], 'q')
    p_e = [Atom([Term(True, 'X_0'), Term(True, 'X_1')], 'p')]
    rule_manager = Optimized_Combinatorial_Generator(
        [target], (rule_template_1, rule_template_2), target, p_e)
    rule_matrix = rule_manager.generate_clauses()
    assert len(rule_matrix[0]) == 8
    assert len(rule_matrix[1]) == 58
예제 #8
0
def less_than():
    B = [Atom([Term(False, '0')], 'zero')] + \
        [Atom([Term(False, str(i)), Term(False, str(i + 1))], 'succ')
         for i in range(0, 9)]

    P = []
    N = []
    for i in range(0, 10):
        for j in range(0, 10):
            if j >= i:
                N.append(
                    Atom([Term(False, str(j)), Term(False, str(i))], 'target'))
            else:
                P.append(
                    Atom([Term(False, str(j)), Term(False, str(i))], 'target'))

    term_x_0 = Term(True, 'X_0')
    term_x_1 = Term(True, 'X_1')

    p_e = [Atom([term_x_0], 'zero'), Atom([term_x_0, term_x_1], 'succ')]
    p_a = []

    target = Atom([term_x_0, term_x_1], 'target')
    # target_rule = (Rule_Template(0, False), Rule_Template(1, True))
    target_rule = (Rule_Template(0, False), Rule_Template(1, True))
    rules = {target: target_rule}
    constants = [str(i) for i in range(0, 10)]

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    dilp = DILP(langage_frame, B, P, N, program_template)
    dilp.train()
예제 #9
0
def equality_test():
    term1 = Term(True, 'X_0')
    term2 = Term(True, 'X_1')
    atom1 = Atom([term1, term1], 'p')
    atom2 = Atom([term1, term2], 'p')
    head = Atom([term1, term2], 'q')
    clause1 = Clause(head, [atom1, atom2])
    clause2 = Clause(head, [atom2, atom1])
    pred_dict = {}
    pred_dict[clause1] = 1
    pred_dict[clause2] = 1
    assert clause1 == clause2
    assert len(pred_dict) == 1
예제 #10
0
def process_file(filename):
    atoms = []
    predicates = set()
    with open(filename) as f:
        data = f.read().replace('\n', '')
        result = prolog_sentences.parseString(data)
        for fact in result['facts']:
            predicate = fact['relationship']
            terms = [Term(False, term) for term in fact['arguments']]
            constants = set([term for term in fact['arguments']])
            term_var = [Term(True, f'X_{i}') for i in range(len(terms))]
            predicates.add(Atom(term_var, predicate))
            atoms.append(Atom(terms, predicate))
    return atoms, predicates, constants
예제 #11
0
def action_switch_2():
    num = 30
    inx = random.sample(range(0, 100), num)
    neg_inx = list(set(range(100)) - set(inx))
    B = [Atom([Term(False, str(id))], 'busy') for id in inx
         ] + [Atom([Term(False, str(id))], 'NObusy') for id in neg_inx] + [
             Atom([Term(False, str(id))], 'front')
             for id in neg_inx if id % 2 == 0
         ] + [
             Atom([Term(False, str(id))], 'back')
             for id in neg_inx if id % 2 != 0
         ]
    P = [Atom([Term(False, str(id))], 'switch') for id in neg_inx]
    N = [Atom([Term(False, str(id))], 'switch') for id in inx]
    term_x_0 = Term(True, 'X')
    term_x_1 = Term(True, 'X1')
    p_e = [
        Atom([term_x_0], 'busy'),
        Atom([term_x_0], 'NObusy'),
        Atom([term_x_0], 'side'),
        Atom([term_x_0], 'front'),
        Atom([term_x_0], 'back')
    ]
    p_a = []
    target = Atom([term_x_0], 'switch')
    # target_rule = (Rule_Template(0, False), Rule_Template(1, True))
    target_rule = (Rule_Template(0, False), None)
    rules = {target: target_rule}
    constants = [str(i) for i in range(0, 100)]

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    dilp = DILP(langage_frame, B, P, N, program_template)
    dilp.train(steps=252)
예제 #12
0
def even_numbers_negation_test():
    B_atom = [Atom([Term(False, '0')], 'zero')] + \
             [Atom([Term(False, str(i)), Term(False, str(i + 1))], 'succ')
              for i in range(0, 20)]
    B = [Literal(atom, False) for atom in B_atom]

    P_atom = [Atom([Term(False, str(i))], 'target') for i in range(0, 21, 2)]
    P = [Literal(atom, False) for atom in P_atom]
    N_atom = [Atom([Term(False, str(i))], 'target') for i in range(1, 21, 2)]
    N = [Literal(atom, False) for atom in N_atom]

    term_x_0 = Term(True, 'X_0')
    term_x_1 = Term(True, 'X_1')

    p_e = [
        Literal(Atom([term_x_0], 'zero'), False),
        Literal(Atom([term_x_0, term_x_1], 'succ'), False)
    ]
    p_a = [Literal(Atom([term_x_0, term_x_1], 'pred'), False)]
    target = Literal(Atom([term_x_0], 'target'), False)
    constants = [str(i) for i in range(0, 21)]

    # Define rules for intensional predicates
    p_a_rule = (Rule_Template_Negation(1, False, False), None)
    target_rule = (Rule_Template_Negation(0, False, True),
                   Rule_Template_Negation(1, True, False))
    rules = {p_a[0]: p_a_rule, target: target_rule}

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    #program_template = Program_Template(p_a, rules, 300)

    snafdilp = SNAFDILP(langage_frame, B, P, N, program_template)

    return snafdilp.train(steps=300)
예제 #13
0
def even_numbers_test():
    B = [Atom([Term(False, '0')], 'zero')] + \
        [Atom([Term(False, str(i)), Term(False, str(i + 1))], 'succ')
         for i in range(0, 20)]

    P = [Atom([Term(False, str(i))], 'target') for i in range(0, 21, 2)]
    N = [Atom([Term(False, str(i))], 'target') for i in range(1, 21, 2)]
    print(P)
    term_x_0 = Term(True, 'X_0')
    term_x_1 = Term(True, 'X_1')

    p_e = [Atom([term_x_0], 'zero'), Atom([term_x_0, term_x_1], 'succ')]
    p_a = [Atom([term_x_0, term_x_1], 'pred')]
    target = Atom([term_x_0], 'target')
    constants = [str(i) for i in range(0, 21)]

    # Define rules for intensional predicates
    p_a_rule = (Rule_Template(1, False), None)
    target_rule = (Rule_Template(0, False), Rule_Template(1, True))
    rules = {p_a[0]: p_a_rule, target: target_rule}

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    #program_template = Program_Template(p_a, rules, 300)

    dilp = DILP(langage_frame, B, P, N, program_template)
예제 #14
0
def greater_than():
    '''
    Learn the target predicate greater_than(X,Y) which is true
    if X is greater than Y. The aim is to mirror the less_than
    predicate use of negation as failure.
    '''
    constants = [str(i) for i in range(0, 10)]
    B_atom = [Atom([Term(False, '0')], 'zero')] + \
        [Atom([Term(False, str(i)), Term(False, str(i + 1))], 'succ')
         for i in range(0, 9)]
    B = [Literal(atom, False) for atom in B_atom]

    P_atom = []
    N_atom = []
    for i in range(0, 10):
        for j in range(0, 10):
            if j > i:
                P_atom.append(
                    Atom([Term(False, str(j)),
                          Term(False, str(i))], 'target'))
            else:
                N_atom.append(
                    Atom([Term(False, str(j)),
                          Term(False, str(i))], 'target'))
    P = [Literal(atom, False) for atom in P_atom]
    N = [Literal(atom, False) for atom in N_atom]

    term_x_0 = Term(True, 'X_0')
    term_x_1 = Term(True, 'X_1')

    p_e = [
        Literal(Atom([term_x_0], 'zero'), False),
        Literal(Atom([term_x_0, term_x_1], 'succ'), False)
    ]
    p_a = [Literal(Atom([term_x_0, term_x_1], 'pred'), False)]
    target = Atom([term_x_0, term_x_1], 'target')

    # Define rules for intensional predicates
    p_a_rule = [(Rule_Template_Negation(0, False, False),
                 Rule_Template_Negation(1, True, False))]
    target_rule = (Rule_Template_Negation(0, True, True), None)
    rules = {p_a[0]: p_a_rule[0], target: target_rule}

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)

    snafdilp = SNAFDILP(langage_frame, B, P, N, program_template)
    return snafdilp.train(steps=500)
예제 #15
0
    def x_c(clause: Clause, dict_valuation: dict, constants: list):
        '''
        Arguments:
            clause {Clause} -- clause to generate f_c
            valuations {list} -- valuation list
            constants {list} -- constants
        '''
        if clause == None:
            return np.zeros((len(dict_valuation), 1, 2), dtype=int)
        constant_terms = [Term(False, constant) for constant in constants]
        head_variables = clause.head.variables
        variables = [Term(True, variable) for variable in clause.variables]
        existential_variable = len(variables) - len(head_variables)
        comb = []
        for var in variables:
            temp = []
            for c in constant_terms:
                temp.append((var, c))
            comb.append(temp)
        w = np.power(
            len(constants), existential_variable)
        x_c = np.zeros((len(dict_valuation), w, 2), dtype=int)

        derived_valuation = defaultdict(list)
        for elm in product(*comb):
            subs = {a[0]: a[1] for a in elm}
            substituted_head = Atom(
                [subs[term] for term in clause.head.terms], clause.head.predicate)
            derived = []
            for literal in clause.body:
                substituted_body_atom = Atom([subs[term]
                                         for term in literal.terms], literal.predicate)
                substituted_body = Literal(substituted_body_atom, literal.negated)
                derived.append(int(dict_valuation[substituted_body]))
            if derived not in derived_valuation[substituted_head]: # BIG MAYBE
                derived_valuation[substituted_head].append(derived)

        for literal in derived_valuation:
            for i in range(0, len(derived_valuation[literal])):
                x_c[dict_valuation[literal], i, 0] = 0
                x_c[dict_valuation[literal], i, 0] = derived_valuation[literal][i][0]
                x_c[dict_valuation[literal], i, 1] = derived_valuation[literal][i][1]
        return x_c
예제 #16
0
    def f_c(clause: Clause, valuations, dict_valuation: dict, constants: list):
        '''

        Arguments:
            clause {Clause} -- clause to generate f_c
            valuations {list} -- valuation list
            constants {list} -- constants
        '''
        constant_terms = [Term(False, constant) for constant in constants]
        variables = [Term(True, variable) for variable in clause.variables]
        comb = []
        for var in variables:
            temp = []
            for c in constant_terms:
                temp.append((var, c))
            comb.append(temp)
        # dict_valuation = {valuations[i][0]:
            #   valuations[i][1] for i in range(0, len(valuations))}
        derived_valuation = defaultdict(list)
        derived_valuation2 = defaultdict(list)
        for elm in product(*comb):
            subs = {a[0]: a[1] for a in elm}
            substituted_head = Atom(
                [subs[term] for term in clause.head.terms], clause.head.predicate)
            derived = []
            for atom in clause.body:
                substituted_body = Atom([subs[term]
                                         for term in atom.terms], atom.predicate)
                derived.append(valuations[dict_valuation[substituted_body]])
            derived_valuation[substituted_head].append(
                reduce(lambda a, b: a * b, derived, 1))
            derived_valuation2[substituted_head].append(derived)

        z_c = np.zeros(valuations.shape[0], dtype=np.float32)
        for atom in dict_valuation:
            if(atom in derived_valuation):
                z_c[dict_valuation[atom]] = max(derived_valuation[atom])
            else:
                z_c[dict_valuation[atom]] = 0
        return z_c
예제 #17
0
def action_switch():
    #num = 70
    #inx=random.sample(range(0,100),num)
    #neg_inx = list(set(range(100))-set(inx))
    B_0, P_up, P_sw, P_stay, N_up, N_sw, N_stay = get_B_N_P()
    B = [Atom([Term(False, str(x[1]))], x[0]) for x in B_0]
    # B = [Atom([Term(False, str(id))], 'busy')
    #      for id in inx]+ [Atom([Term(False, str(id))], 'NObusy')
    #      for id in neg_inx]
    # print("B..........")
    # print(B)
    P = [Atom([Term(False, str(id))], 'sw') for id in P_sw]
    N = []  #[Atom([Term(False, str(id))], 'sw')
    #for id in N_sw]
    # print("P..........")
    # print(P)
    # print("N..........")
    # print(N)
    term_x_0 = Term(True, 'X')
    term_x_1 = Term(True, 'X1')
    p_e = [
        Atom([term_x_0], 'busy'),
        Atom([term_x_0], 'NObusy'),
        Atom([term_x_0], 'side'),
        Atom([term_x_0], 'front'),
        Atom([term_x_0], 'back')
    ]
    #p_a = []
    p_a = [Atom([term_x_0], 'pred')]
    target = Atom([term_x_0], 'sw')
    # target_rule = (Rule_Template(0, False), Rule_Template(1, True))
    target_rule = (Rule_Template(0, True), Rule_Template(0, False))
    p_a_rule = (Rule_Template(0, False), None)
    rules = {p_a[0]: p_a_rule, target: target_rule}
    constants = [str(i) for i in range(0, 400)]

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    dilp = DILP(langage_frame, B, P, N, program_template)
    dilp.train(steps=252)
예제 #18
0
def x_c_test():
    '''Testing f_c function
    '''
    term_x = Term(True, 'X_0')
    term_y = Term(True, 'X_1')
    term_z = Term(True, 'X_2')
    r = Atom([term_x, term_y], 'r')
    p = Atom([term_x, term_z], 'p')
    q = Atom([term_z, term_y], 'q')
    clause = Clause(r, [p, q])

    # Example from the book
    example_val = {
        Atom([term_a, term_a], 'p'): 1.0,
        Atom([term_a, term_b], 'p'): 0.9,
        Atom([term_a, term_a], 'q'): 0.1,
        Atom([term_b, term_a], 'q'): 0.2,
        Atom([term_b, term_b], 'q'): 0.8,
    }
    for key in example_val:
        initial_valuation[valuation_mapping[key]] = example_val[key]
    x_c = Inference.x_c(clause, valuation_mapping, ['a', 'b'])
    print(valuation_mapping)
    print(x_c)
예제 #19
0
def f_c_test2():
    '''Testing f_c function
    '''
    term1 = Term(True, 'X_0')
    term2 = Term(True, 'X_1')
    target = Atom([term1], 'r')
    p_e = [Atom([term1, term2], 'p')]
    p_a = [Atom([term1, term2], 'q')]

    rule_template_1 = Rule_Template(0, False)
    rule_template_2 = Rule_Template(1, True)

    language_frame = Language_Frame(target, p_e, set(['a', 'b']))
    program_template = Program_Template(p_a,
                                        (rule_template_1, rule_template_2),
                                        300)

    term_a = Term(False, 'a')
    term_b = Term(False, 'b')
    # Background facts: p(a,a) p(a,b)
    background = [Atom([term_a, term_a], 'p'), Atom([term_a, term_b], 'p')]
    # Positive: p(b,a)
    positive = [Atom([term_b, term_a], 'p')]
    # Negative: p(b,b)
    negative = [Atom([term_b, term_b], 'p')]
    ilp = ILP(language_frame, background, positive, negative, program_template)
    initial_valuation, valuation_mapping = ilp.convert()

    term_x = Term(True, 'X_0')
    term_y = Term(True, 'X_1')
    term_z = Term(True, 'X_2')
    r = Atom([term_x], 'r')
    p = Atom([term_x, term_z], 'p')
    q = Atom([term_z, term_y], 'q')
    clause = Clause(r, [p, q])

    # Example from the book
    example_val = {
        Atom([term_a, term_a], 'p'): 1.0,
        Atom([term_a, term_b], 'p'): 0.9,
        Atom([term_a, term_a], 'q'): 0.1,
        Atom([term_b, term_a], 'q'): 0.2,
        Atom([term_b, term_b], 'q'): 0.8,
    }
    for key in example_val:
        initial_valuation[valuation_mapping[key]] = example_val[key]
    x_c = Inference.x_c(clause, valuation_mapping, ['a', 'b'])
    print(valuation_mapping)
    print(x_c)
    assert False
예제 #20
0
def odd():
    '''
   Learn the target predicate of odd(X)
   which is true if X is an odd number
   '''
    B_atom = [Atom([Term(False, '0')], 'zero')] + \
             [Atom([Term(False, str(i)), Term(False, str(i + 1))], 'succ')
              for i in range(0, 20)]
    B = [Literal(atom, False) for atom in B_atom]
    # Odd numbers
    P_atom = [Atom([Term(False, str(i))], 'target') for i in range(1, 21, 2)]
    P = [Literal(atom, False) for atom in P_atom]
    # Even numbers
    N_atom = [Atom([Term(False, str(i))], 'target') for i in range(0, 21, 2)]
    N = [Literal(atom, False) for atom in N_atom]

    term_x_0 = Term(True, 'X_0')
    term_x_1 = Term(True, 'X_1')

    p_e = [
        Literal(Atom([term_x_0], 'zero'), False),
        Literal(Atom([term_x_0, term_x_1], 'succ'), False)
    ]
    p_a = [
        Literal(Atom([term_x_0, term_x_1], 'succ2'), False),
        Literal(Atom([term_x_0], 'even'), False)
    ]
    target = Literal(Atom([term_x_0], 'target'), False)
    constants = [str(i) for i in range(0, 21)]

    # Define rules for intensional predicates
    succ2_rule = (Rule_Template_Negation(1, False, False), None)
    even_rule = (Rule_Template_Negation(0, False, False),
                 Rule_Template_Negation(1, True, False))
    target_rule = (Rule_Template_Negation(0, True, True), None)
    rules = {p_a[0]: succ2_rule, p_a[1]: even_rule, target: target_rule}

    language_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    # program_template = Program_Template(p_a, rules, 300)

    snafdilp = SNAFDILP(language_frame, B, P, N, program_template)
    return snafdilp.train(steps=400)
예제 #21
0
def has_roommate():
    '''
    Learn the target predicate of has_roommate(X, Y)
    which is true if there exists a person Y that X is married to
    and Y is not a researcher.
    '''
    constants = [
        'Paul', 'Randy', 'Rachel', 'Bob', 'Alice', 'Steve', 'Frank', 'Julia',
        'Stan', 'Kyle', 'Peter', 'Tony', 'Monica', 'Carl', 'Dolores', 'Tommy',
        'Pedro', 'Will', 'Sophie', 'Eric', 'Jon', 'Robert', 'Sansa', 'Arya',
        'Tormund', 'Mance'
    ]
    # married(X,Y) with symmetric closure
    B_atom = [
        Atom([Term(False, 'Bob'), Term(False, 'Rachel')], 'married'),
        Atom([Term(False, 'Rachel'), Term(False, 'Bob')], 'married'),
        Atom([Term(False, 'Randy'), Term(False, 'Alice')], 'married'),
        Atom([Term(False, 'Alice'), Term(False, 'Randy')], 'married'),
        Atom([Term(False, 'Steve'), Term(False, 'Julia')], 'married'),
        Atom([Term(False, 'Julia'), Term(False, 'Steve')], 'married'),
        Atom(
            [Term(False, 'Frank'), Term(False, 'Monica')], 'married'),
        Atom([Term(False, 'Monica'),
              Term(False, 'Frank')], 'married'),
        Atom([Term(False, 'Stan'), Term(False, 'Dolores')], 'married'),
        Atom([Term(False, 'Dolores'),
              Term(False, 'Frank')], 'married'),
        Atom([Term(False, 'Will'), Term(False, 'Sophie')], 'married'),
        Atom(
            [Term(False, 'Sophie'), Term(False, 'Will')], 'married'),
        Atom([Term(False, 'Eric'), Term(False, 'Arya')], 'married'),
        Atom([Term(False, 'Arya'), Term(False, 'Eric')], 'married'),
        # researcher(X)
        Atom([Term(False, 'Robert')], 'researcher'),
        Atom([Term(False, 'Eric')], 'researcher'),
        Atom([Term(False, 'Bob')], 'researcher'),
        Atom([Term(False, 'Frank')], 'researcher'),
        Atom([Term(False, 'Monica')], 'researcher'),
        Atom([Term(False, 'Mance')], 'researcher'),
        Atom([Term(False, 'Jon')], 'researcher'),
        Atom([Term(False, 'Tormund')], 'researcher'),
        Atom([Term(False, 'Sansa')], 'researcher')
    ]
    B = [Literal(atom, False) for atom in B_atom]

    P_atom = [
        Atom([Term(False, 'Randy')], 'target'),
        Atom([Term(False, 'Alice')], 'target'),
        Atom([Term(False, 'Steve')], 'target'),
        Atom([Term(False, 'Julia')], 'target'),
        Atom([Term(False, 'Dolores')], 'target'),
        Atom([Term(False, 'Stan')], 'target'),
        Atom([Term(False, 'Will')], 'target'),
        Atom([Term(False, 'Sophie')], 'target')
    ]
    P = [Literal(atom, False) for atom in P_atom]

    N_atom = [
        Atom([Term(False, 'Bob')], 'target'),
        Atom([Term(False, 'Rachel')], 'target'),
        Atom([Term(False, 'Frank')], 'target'),
        Atom([Term(False, 'Monica')], 'target'),
        Atom([Term(False, 'Kyle')], 'target'),
        Atom([Term(False, 'Peter')], 'target'),
        Atom([Term(False, 'Tony')], 'target'),
        Atom([Term(False, 'Carl')], 'target'),
        Atom([Term(False, 'Tommy')], 'target'),
        Atom([Term(False, 'Pedro')], 'target'),
        Atom([Term(False, 'Tommy')], 'target'),
        Atom([Term(False, 'Eric')], 'target'),
        Atom([Term(False, 'Arya')], 'target'),
        Atom([Term(False, 'Jon')], 'target'),
        Atom([Term(False, 'Robert')], 'target'),
        Atom([Term(False, 'Mance')], 'target'),
        Atom([Term(False, 'Tormund')], 'target')
    ]
    N = [Literal(atom, False) for atom in N_atom]

    term_x_0 = Term(True, 'X_0')
    term_x_1 = Term(True, 'X_1')

    p_e = [
        Literal(Atom([term_x_0, term_x_1], 'married'), False),
        Literal(Atom([term_x_0], 'researcher'), False)
    ]
    p_a = [Literal(Atom([term_x_0, term_x_1], 'pred'), False)]
    target = Literal(Atom([term_x_0], 'target'), False)

    # Define rules for intensional predicates
    p_a_rule = (Rule_Template_Negation(0, False, True), None)
    target_rule = (Rule_Template_Negation(1, True, False), None)
    rules = {p_a[0]: p_a_rule, target: target_rule}

    language_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    # program_template = Program_Template(p_a, rules, 300)

    snafdilp = SNAFDILP(language_frame, B, P, N, program_template)
    return snafdilp.train(steps=200)
예제 #22
0
def two_children():
    '''
    Learn the target predicate of has_at_least_two_children(X).
    In a directed graph we want to check if a node has at least two children
    (that are not equal).
    '''
    constants = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
    edge_relation = [
        Atom([Term(False, 'a'), Term(False, 'b')], 'edge'),
        Atom([Term(False, 'a'), Term(False, 'c')], 'edge'),
        Atom([Term(False, 'b'), Term(False, 'd')], 'edge'),
        Atom([Term(False, 'c'), Term(False, 'd')], 'edge'),
        Atom([Term(False, 'c'), Term(False, 'e')], 'edge'),
        Atom([Term(False, 'd'), Term(False, 'e')], 'edge'),
        Atom([Term(False, 'f'), Term(False, 'a')], 'edge'),
        Atom([Term(False, 'f'), Term(False, 'b')], 'edge'),
        Atom([Term(False, 'g'), Term(False, 'e')], 'edge'),
        Atom([Term(False, 'g'), Term(False, 'c')], 'edge')
    ]
    equals_relation = [
        Atom([Term(False, x), Term(False, y)], 'equals')
        for x, y in zip(constants, constants) if x == y
    ]
    B_atom = edge_relation + equals_relation
    B = [Literal(atom, False) for atom in B_atom]

    P_atom = [
        Atom([Term(False, 'a')], 'target'),
        Atom([Term(False, 'c')], 'target'),
        Atom([Term(False, 'f')], 'target'),
        Atom([Term(False, 'g')], 'target')
    ]
    P = [Literal(atom, False) for atom in P_atom]

    N_atom = [
        Atom([Term(False, 'b')], 'target'),
        Atom([Term(False, 'd')], 'target'),
        Atom([Term(False, 'e')], 'target'),
        Atom([Term(False, 'h')], 'target')
    ]
    N = [Literal(atom, False) for atom in N_atom]

    term_x_0 = Term(True, 'X_0')
    term_x_1 = Term(True, 'X_1')
    term_x_2 = Term(True, 'X_2')

    p_e = [
        Literal(Atom([term_x_0, term_x_1], 'edge'), False),
        Literal(Atom([term_x_0, term_x_1], 'equals'), False)
    ]
    p_a = [Literal(Atom([term_x_0, term_x_2], 'pred'), False)]
    target = Literal(Atom([term_x_0], 'target'), False)

    # Define rules for intensional predicates
    p_a_rule = (Rule_Template_Negation(1, False, True), None)
    target_rule = (Rule_Template_Negation(1, True, False), None)
    rules = {p_a[0]: p_a_rule, target: target_rule}

    language_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    # program_template = Program_Template(p_a, rules, 300)

    snafdilp = SNAFDILP(language_frame, B, P, N, program_template)
    return snafdilp.train(steps=300)
예제 #23
0
'''File for testing inference functions (Inference.py)
'''
from src.core import Term, Atom, Clause
from src.ilp import Language_Frame, Program_Template, Rule_Template, Inference, ILP

epsilon = 0.001

term1 = Term(True, 'X_0')
term2 = Term(True, 'X_1')
target = Atom([term1, term2], 'r')
p_e = [Atom([term1, term2], 'p')]
p_a = [Atom([term1, term2], 'q')]

rule_template_1 = Rule_Template(0, False)
rule_template_2 = Rule_Template(1, True)

language_frame = Language_Frame(target, p_e, set(['a', 'b']))
program_template = Program_Template(p_a, (rule_template_1, rule_template_2),
                                    300)

term_a = Term(False, 'a')
term_b = Term(False, 'b')
# Background facts: p(a,a) p(a,b)
background = [Atom([term_a, term_a], 'p'), Atom([term_a, term_b], 'p')]
# Positive: p(b,a)
positive = [Atom([term_b, term_a], 'p')]
# Negative: p(b,b)
negative = [Atom([term_b, term_b], 'p')]
ilp = ILP(language_frame, background, positive, negative, program_template)
(initial_valuation, valuation_mapping) = ilp.convert()
예제 #24
0

B, pred_f, constants_f = process_file('%s/facts.dilp' % sys.argv[1])
P, target_p, constants_p = process_file('%s/positive.dilp' % sys.argv[1])
N, target_n, constants_n = process_file('%s/negative.dilp' % sys.argv[1])

if not (target_p == target_n):
    raise Exception('Positive and Negative files have different targets')
elif not len(target_p) == 1:
    raise Exception('Can learn only one predicate at a time')
elif not constants_n.issubset(constants_f) or not constants_p.issubset(
        constants_f):
    raise Exception(
        'Constants not in fact file exists in positive/negative file')

term_x_0 = Term(True, 'X_0')
term_x_1 = Term(True, 'X_1')

p_e = list(pred_f)
p_a = [Atom([term_x_0, term_x_1], 'pred')]
target = list(target_p)[0]
constants = constants_f

p_a_rule = (Rule_Template(1, False), None)
target_rule = (Rule_Template(0, False), Rule_Template(1, True))
rules = {p_a[0]: p_a_rule, target: target_rule}

langage_frame = Language_Frame(target, p_e, constants)
program_template = Program_Template(p_a, rules, 10)
dilp = DILP(langage_frame, B, P, N, program_template)
dilp.train()
예제 #25
0
    def generate_clauses(self):
        '''Generate all clauses with some level of optimization
        '''
        rule_matrix = []
        for rule in self.rules:
            # logger.info('Generating clauses')
            if rule is None:
                rule_matrix.append([None])
                continue
            clauses = []
            if rule.allow_intensional:
                p = list(set(self.p_e + self.p_i + [self.target]))
                p_i = list(set(self.p_i))
                intensional_predicates = [atom.predicate for atom in p_i]
            else:
                p = list(set(self.p_e))
            variables = ['X_%d' %
                         i for i in range(0, self.target.arity + rule.v)]
            target_variables = ['X_%d' %
                                i for i in range(0, self.target.arity)]

            # Generate the body list
            body_list = []
            head = Atom(
                [Term(True, var) for var in target_variables], self.target.predicate)
            for var1 in variables:
                for var2 in variables:
                    term1 = Term(True, var1)
                    term2 = Term(True, var2)
                    body_list.append([term1, term2])
            # Generate the list
            added_pred = {}
            for ind1 in range(0, len(p)):
                pred1 = p[ind1]
                for b1 in body_list:
                    for ind2 in range(ind1, len(p)):
                        pred2 = p[ind2]
                        for b2 in body_list:
                            for negations in range(4):
                                if not rule.neg and negations > 0:
                                    continue
                                body1_atom = Atom([b1[index]
                                              for index in range(0, pred1.arity)], pred1.predicate)
                                body2_atom = Atom([b2[index]
                                              for index in range(0, pred2.arity)], pred2.predicate)

                                if negations == 0:  # No negation
                                    body1 = Literal(body1_atom, False)
                                    body2 = Literal(body2_atom, False)
                                if negations == 1: # First body is negated
                                    body1 = Literal(body1_atom, True)
                                    body2 = Literal(body2_atom, False)
                                if negations == 2: # Second body is negated
                                    body1 = Literal(body1_atom, False)
                                    body2 = Literal(body2_atom, True)
                                if negations == 3: # Both bodies are negated
                                    body1 = Literal(body1_atom, True)
                                    body2 = Literal(body2_atom, True)

                                clause = Clause(head, [body1, body2])
                                # logger.info(clause)
                                # All variables in head should be in the body
                                if not set(target_variables).issubset([v.name for v in b1] + [v.name for v in b2]):
                                    continue
                                elif head == body1 or head == body2:  # No Circular
                                    continue
                                # NOTE: Based on appendix requires to have a intensional predicate
                                elif rule.allow_intensional and not (body1.predicate in intensional_predicates or body2.predicate in intensional_predicates):
                                    continue
                                elif clause in added_pred:
                                    continue
                                # Disallow a clause with the head negated in the body
                                elif head.predicate == body1.predicate and body1.negated:
                                    continue
                                elif head.predicate == body2.predicate and body2.negated:
                                    continue
                                # Disallow positive and negative versions of the same literal in a clause
                                elif body1_atom == body2_atom and body1.negated != body2.negated:
                                    # If the variables of the clause are different then allow this clause
                                    variables1 = body1_atom.terms
                                    variables2 = body2_atom.terms
                                    add_clause = True
                                    for i in range(len(variables1)):
                                        if variables1[i] != variables2[i]:
                                            add_clause = False
                                            break
                                    if not add_clause:
                                        continue
                                else:
                                    added_pred[clause] = 1
                                    clauses.append(clause)
            rule_matrix.append(clauses)
            # logger.info('Clauses Generated')
        return rule_matrix
예제 #26
0
def no_negative_cycle():
    '''
    Learn the target predicate no_negative_cycle(X). The predicate checks if
    a given node in a graph is part of a negative cycle (cycle with at least one
    negative edge).
    '''
    constants = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
    edge_relations = [
        Atom([Term(False, 'a'), Term(False, 'b')], 'edge'),
        Atom([Term(False, 'a'), Term(False, 'c')], 'edge'),
        Atom([Term(False, 'b'), Term(False, 'c')], 'edge'),
        Atom([Term(False, 'c'), Term(False, 'd')], 'edge'),
        Atom([Term(False, 'c'), Term(False, 'e')], 'edge'),
        Atom([Term(False, 'd'), Term(False, 'h')], 'edge'),
        Atom([Term(False, 'h'), Term(False, 'd')], 'edge'),
        Atom([Term(False, 'f'), Term(False, 'a')], 'edge'),
        Atom([Term(False, 'f'), Term(False, 'b')], 'edge'),
        Atom([Term(False, 'g'), Term(False, 'e')], 'edge'),
        Atom([Term(False, 'g'), Term(False, 'c')], 'edge'),
        Atom([Term(False, 'e'), Term(False, 'a')], 'edge')
    ]
    edge_type = [
        Atom([Term(False, 'a'), Term(False, 'b')], 'positive'),
        Atom([Term(False, 'a'), Term(False, 'c')], 'negative'),
        Atom([Term(False, 'b'), Term(False, 'c')], 'positive'),
        Atom([Term(False, 'c'), Term(False, 'd')], 'positive'),
        Atom([Term(False, 'c'), Term(False, 'e')], 'negative'),
        Atom([Term(False, 'd'), Term(False, 'e')], 'positive'),
        Atom([Term(False, 'h'), Term(False, 'd')], 'positive'),
        Atom([Term(False, 'f'), Term(False, 'a')], 'positive'),
        Atom([Term(False, 'f'), Term(False, 'b')], 'positive'),
        Atom([Term(False, 'g'), Term(False, 'e')], 'positive'),
        Atom([Term(False, 'g'), Term(False, 'c')], 'positive'),
        Atom([Term(False, 'e'), Term(False, 'a')], 'positive')
    ]
    B_atom = edge_relations + edge_type
    B = [Literal(atom, False) for atom in B_atom]

    P_atom = [
        Atom([Term(False, 'f')], 'target'),
        Atom([Term(False, 'g')], 'target'),
        Atom([Term(False, 'd')], 'target'),
        Atom([Term(False, 'h')], 'target')
    ]
    P = [Literal(atom, False) for atom in P_atom]

    N_atom = [
        Atom([Term(False, 'a')], 'target'),
        Atom([Term(False, 'b')], 'target'),
        Atom([Term(False, 'c')], 'target'),
        Atom([Term(False, 'e')], 'target')
    ]
    N = [Literal(atom, False) for atom in N_atom]

    term_x_0 = Term(True, 'X_0')
    term_x_1 = Term(True, 'X_1')
    term_x_2 = Term(True, 'X_2')

    p_e = [
        Literal(Atom([term_x_0, term_x_1], 'edge'), False),
        Literal(Atom([term_x_0, term_x_1], 'positive'), False),
        Literal(Atom([term_x_0, term_x_1], 'negative'), False)
    ]
    p_a = [Literal(Atom([term_x_0, term_x_2], 'pred'), False)]
    target = Literal(Atom([term_x_0], 'target'), False)

    # Define rules for intensional predicates
    p_a_rule = [(Rule_Template_Negation(0, False, True),
                 Rule_Template_Negation(1, True, False))]
    target_rule = (Rule_Template_Negation(0, True, True), None)
    rules = {p_a[0]: p_a_rule[0], target: target_rule}

    language_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    # program_template = Program_Template(p_a, rules, 300)

    snafdilp = SNAFDILP(language_frame, B, P, N, program_template)
    return snafdilp.train(steps=300)
예제 #27
0
def innocent():
    '''
    Learn the target predicate of innocent(X)
    which is true if X is not guilty
    '''
    constants = [
        'Paul', 'Randy', 'Rachel', 'Bob', 'Alice', 'Stan', 'Kyle', 'Peter',
        'Tony', 'Monica'
    ]
    B_atom = [
        Atom([Term(False, 'Bob')], 'guilty'),
        Atom([Term(False, 'Randy')], 'guilty'),
        Atom([Term(False, 'Peter')], 'guilty'),
        Atom([Term(False, 'Alice')], 'guilty'),
        Atom([Term(False, 'Monica')], 'guilty')
    ]
    B = [Literal(atom, False) for atom in B_atom]

    P_atom = [
        Atom([Term(False, 'Paul')], 'target'),
        Atom([Term(False, 'Rachel')], 'target'),
        Atom([Term(False, 'Kyle')], 'target'),
        Atom([Term(False, 'Tony')], 'target'),
        Atom([Term(False, 'Stan')], 'target')
    ]
    P = [Literal(atom, False) for atom in P_atom]

    N_atom = [
        Atom([Term(False, 'Bob')], 'target'),
        Atom([Term(False, 'Randy')], 'target'),
        Atom([Term(False, 'Peter')], 'target'),
        Atom([Term(False, 'Alice')], 'target'),
        Atom([Term(False, 'Monica')], 'target')
    ]
    N = [Literal(atom, False) for atom in N_atom]

    term_x_0 = Term(True, 'X_0')

    p_e = [Literal(Atom([term_x_0], 'guilty'), False)]
    p_a = []
    target = Literal(Atom([term_x_0], 'target'), False)

    # Define rules for intensional predicates
    p_a_rule = (None, None)
    target_rule = (Rule_Template_Negation(0, False, True), None)
    rules = {target: target_rule}

    language_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    # program_template = Program_Template(p_a, rules, 300)

    snafdilp = SNAFDILP(language_frame, B, P, N, program_template)
    return snafdilp.train(steps=200)
예제 #28
0
def can_fly():
    '''
    Learn the target predicate of can_fly(X)
    which is true if X is a bird, but not an abnormal bird
    '''
    constants = [
        'bluebird', 'penguin', 'ostrich', 'blackbird', 'robin', 'sparrow',
        'starling', 'chicken', 'kiwi', 'steamerduck', 'kakapo', 'takahe',
        'weka', 'pigeon', 'swan', 'duck', 'goldfinch', 'woodpecker', 'bluetit',
        'greattit', 'puddle', 'forrestcat', 'pitbull', 'goldenretriever',
        'perser', 'bengal', 'siamese', 'sphynx', 'ragdoll', 'savannah',
        'sibiriancat', 'greyhound', 'malteser', 'dobermann', 'rottweiler',
        'bostonterrier', 'scottishfold', 'exotic', 'russianblue'
    ]
    B_atom = [  # birds
        Atom([Term(False, 'bluebird')], 'is_bird'),
        Atom([Term(False, 'woodpecker')], 'is_bird'),
        Atom([Term(False, 'penguin')], 'is_bird'),
        Atom([Term(False, 'bluetit')], 'is_bird'),
        Atom([Term(False, 'greattit')], 'is_bird'),
        Atom([Term(False, 'ostrich')], 'is_bird'),
        Atom([Term(False, 'blackbird')], 'is_bird'),
        Atom([Term(False, 'robin')], 'is_bird'),
        Atom([Term(False, 'sparrow')], 'is_bird'),
        Atom([Term(False, 'starling')], 'is_bird'),
        Atom([Term(False, 'chicken')], 'is_bird'),
        Atom([Term(False, 'kiwi')], 'is_bird'),
        Atom([Term(False, 'steamerduck')], 'is_bird'),
        Atom([Term(False, 'kakapo')], 'is_bird'),
        Atom([Term(False, 'takahe')], 'is_bird'),
        Atom([Term(False, 'weka')], 'is_bird'),
        Atom([Term(False, 'pigeon')], 'is_bird'),
        Atom([Term(False, 'swan')], 'is_bird'),
        Atom([Term(False, 'duck')], 'is_bird'),
        Atom([Term(False, 'goldfinch')], 'is_bird'),
        # abnormal birds
        Atom([Term(False, 'penguin')], 'abnormal_bird'),
        Atom([Term(False, 'ostrich')], 'abnormal_bird'),
        Atom([Term(False, 'chicken')], 'abnormal_bird'),
        Atom([Term(False, 'kiwi')], 'abnormal_bird'),
        Atom([Term(False, 'steamerduck')], 'abnormal_bird'),
        Atom([Term(False, 'kakapo')], 'abnormal_bird'),
        Atom([Term(False, 'takahe')], 'abnormal_bird'),
        Atom([Term(False, 'weka')], 'abnormal_bird')
    ]
    B = [Literal(atom, False) for atom in B_atom]

    P_atom = [
        Atom([Term(False, 'bluebird')], 'target'),
        Atom([Term(False, 'blackbird')], 'target'),
        Atom([Term(False, 'robin')], 'target'),
        Atom([Term(False, 'sparrow')], 'target'),
        Atom([Term(False, 'starling')], 'target'),
        Atom([Term(False, 'pigeon')], 'target'),
        Atom([Term(False, 'swan')], 'target'),
        Atom([Term(False, 'duck')], 'target'),
        Atom([Term(False, 'goldfinch')], 'target'),
        Atom([Term(False, 'woodpecker')], 'target'),
        Atom([Term(False, 'bluetit')], 'target'),
        Atom([Term(False, 'greattit')], 'target')
    ]
    P = [Literal(atom, False) for atom in P_atom]

    N_atom = [
        Atom([Term(False, 'penguin')], 'target'),
        Atom([Term(False, 'chicken')], 'target'),
        Atom([Term(False, 'kiwi')], 'target'),
        Atom([Term(False, 'steamerduck')], 'target'),
        Atom([Term(False, 'takahe')], 'target'),
        Atom([Term(False, 'puddle')], 'target'),
        Atom([Term(False, 'siamese')], 'target'),
        Atom([Term(False, 'forrestcat')], 'target'),
        Atom([Term(False, 'pitbull')], 'target'),
        Atom([Term(False, 'sphynx')], 'target'),
        Atom([Term(False, 'sibiriancat')], 'target'),
        Atom([Term(False, 'greyhound')], 'target'),
        Atom([Term(False, 'russianblue')], 'target')
    ]
    N = [Literal(atom, False) for atom in N_atom]

    term_x_0 = Term(True, 'X_0')

    p_e = [
        Literal(Atom([term_x_0], 'is_bird'), False),
        Literal(Atom([term_x_0], 'abnormal_bird'), False)
    ]
    p_a = []
    target = Literal(Atom([term_x_0], 'target'), False)

    # Define rules for intensional predicates
    p_a_rule = (None, None)
    target_rule = (Rule_Template_Negation(0, False, True), None)
    rules = {target: target_rule}

    language_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    # program_template = Program_Template(p_a, rules, 300)

    snafdilp = SNAFDILP(language_frame, B, P, N, program_template)
    return snafdilp.train(steps=200)
    def generate_clauses(self):
        '''Generate all clauses with some level of optimization
        '''
        rule_matrix = []
        for rule in self.rules:
            # logger.info('Generating clauses')
            if rule == None:
                rule_matrix.append([None])
                continue
            clauses = []
            if (rule.allow_intensional):
                p = list(set(self.p_e + self.p_i + [self.target]))
                p_i = list(set(self.p_i))
                intensional_predicates = [atom.predicate for atom in p_i]
            else:
                p = list(set(self.p_e))
            variables = [
                'X_%d' % i for i in range(0, self.target.arity + rule.v)
            ]
            target_variables = [
                'X_%d' % i for i in range(0, self.target.arity)
            ]

            # Generate the body list
            body_list = []
            head = Atom([Term(True, var) for var in target_variables],
                        self.target.predicate)
            for var1 in variables:
                for var2 in variables:
                    term1 = Term(True, var1)
                    term2 = Term(True, var2)
                    body_list.append([term1, term2])
            # Generate the list
            added_pred = {}
            for ind1 in range(0, len(p)):
                pred1 = p[ind1]
                for b1 in body_list:
                    for ind2 in range(ind1, len(p)):
                        pred2 = p[ind2]
                        for b2 in body_list:
                            body1 = Atom(
                                [b1[index] for index in range(0, pred1.arity)],
                                pred1.predicate)
                            body2 = Atom(
                                [b2[index] for index in range(0, pred2.arity)],
                                pred2.predicate)

                            clause = Clause(head, [body1, body2])
                            # logger.info(clause)
                            # All variables in head should be in the body
                            if not set(target_variables).issubset(
                                [v.name for v in b1] + [v.name for v in b2]):
                                continue
                            elif head == body1 or head == body2:  # No Circular
                                continue
                            # NOTE: Based on appendix requires to have a intensional predicate
                            elif rule.allow_intensional and not (
                                    body1.predicate in intensional_predicates
                                    or body2.predicate
                                    in intensional_predicates):
                                continue
                            elif clause in added_pred:
                                continue
                            else:
                                added_pred[clause] = 1
                                clauses.append(clause)
            rule_matrix.append(clauses)
            # logger.info('Clauses Generated')
        return rule_matrix
예제 #30
0
def orphan():
    '''
    Learn the target predicate of orphan(X)
    which is true if X has no parent
    '''
    constants = [
        'Paul', 'Randy', 'Rachel', 'Bob', 'Alice', 'Steve', 'Frank', 'Julia',
        'Stan', 'Kyle', 'Peter', 'Tony', 'Monica', 'Carl', 'Dolores', 'Tommy',
        'Pedro', 'Will', 'Sophie', 'Eric', 'Jon', 'Robert', 'Sansa', 'Arya',
        'Tormund', 'Mance'
    ]
    # parent(X, Y) is true if X is the father of Y
    B_atom = [
        Atom([Term(False, 'Bob'), Term(False, 'Paul')], 'parent'),
        Atom([Term(False, 'Bob'), Term(False, 'Alice')], 'parent'),
        Atom([Term(False, 'Randy'), Term(False, 'Tony')], 'parent'),
        Atom([Term(False, 'Randy'), Term(False, 'Stan')], 'parent'),
        Atom([Term(False, 'Peter'), Term(False, 'Kyle')], 'parent'),
        Atom([Term(False, 'Alice'), Term(False, 'Kyle')], 'parent'),
        Atom([Term(False, 'Tony'), Term(False, 'Carl')], 'parent'),
        Atom([Term(False, 'Dolores'),
              Term(False, 'Tony')], 'parent'),
        Atom([Term(False, 'Stan'), Term(False, 'Julia')], 'parent'),
        Atom([Term(False, 'Julia'), Term(False, 'Tommy')], 'parent'),
        Atom([Term(False, 'Kyle'), Term(False, 'Tommy')], 'parent'),
        Atom([Term(False, 'Carl'), Term(False, 'Sophie')], 'parent'),
        Atom([Term(False, 'Carl'), Term(False, 'Eric')], 'parent'),
        Atom([Term(False, 'Tommy'), Term(False, 'Arya')], 'parent'),
        Atom([Term(False, 'Tommy'),
              Term(False, 'Tormund')], 'parent'),
        Atom([Term(False, 'Tommy'), Term(False, 'Mance')], 'parent')
    ]
    B = [Literal(atom, False) for atom in B_atom]

    P_atom = [
        Atom([Term(False, 'Randy')], 'target'),
        Atom([Term(False, 'Bob')], 'target'),
        Atom([Term(False, 'Peter')], 'target'),
        Atom([Term(False, 'Rachel')], 'target'),
        Atom([Term(False, 'Monica')], 'target'),
        Atom([Term(False, 'Dolores')], 'target'),
        Atom([Term(False, 'Steve')], 'target'),
        Atom([Term(False, 'Frank')], 'target'),
        Atom([Term(False, 'Pedro')], 'target'),
        Atom([Term(False, 'Will')], 'target'),
        Atom([Term(False, 'Jon')], 'target'),
        Atom([Term(False, 'Robert')], 'target'),
        Atom([Term(False, 'Sansa')], 'target'),
    ]
    P = [Literal(atom, False) for atom in P_atom]

    N_atom = [
        Atom([Term(False, 'Paul')], 'target'),
        Atom([Term(False, 'Alice')], 'target'),
        Atom([Term(False, 'Kyle')], 'target'),
        Atom([Term(False, 'Tony')], 'target'),
        Atom([Term(False, 'Stan')], 'target'),
        Atom([Term(False, 'Carl')], 'target'),
        Atom([Term(False, 'Julia')], 'target'),
        Atom([Term(False, 'Tommy')], 'target'),
        Atom([Term(False, 'Sophie')], 'target'),
        Atom([Term(False, 'Eric')], 'target'),
        Atom([Term(False, 'Arya')], 'target'),
        Atom([Term(False, 'Tormund')], 'target'),
        Atom([Term(False, 'Mance')], 'target')
    ]
    N = [Literal(atom, False) for atom in N_atom]

    term_x_0 = Term(True, 'X_0')
    term_x_1 = Term(True, 'X_1')

    p_e = [Literal(Atom([term_x_0, term_x_1], 'parent'), False)]
    p_a = []
    target = Literal(Atom([term_x_0], 'target'), False)

    # Define rules for intensional predicates
    p_a_rule = (None, None)
    target_rule = (Rule_Template_Negation(1, False, True), None)
    rules = {target: target_rule}

    language_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    # program_template = Program_Template(p_a, rules, 300)

    snafdilp = SNAFDILP(language_frame, B, P, N, program_template)
    return snafdilp.train(steps=200)