예제 #1
0
def experiment_4():
    config = get_experiment_4_config()
    config.logger.start()
    loader = ImageDataLoader(config)
    trainer = HyperTrainer(config=config, loader=loader)
    trainer.start_tunning()
    config.logger.end()
예제 #2
0
def experiment_0():
    config = get_experiment_0_config()
    config.logger.start()
    loader = ImageDataLoader(config)
    input_shape = config.input_shape
    logging.info(f"input_shape:{input_shape}")
    number_of_classes = len(loader.labbel_mapper.classes_name)
    logging.info(f"number_of_classes:{number_of_classes}")
    trainer = Trainer(config=config, loader=loader)

    trainer.start(model=get_mobilenet(
        hidden_activation=config.hidden_activation,
        output_activation=config.output_activation,
        input_shape=input_shape,
        number_of_classes=number_of_classes),
                  run_id="mobilenet_model")

    trainer.start(model=get_cnn(hidden_activation=config.hidden_activation,
                                output_activation=config.output_activation,
                                input_shape=input_shape,
                                number_of_classes=number_of_classes),
                  run_id="cnn_model")

    trainer = HyperTrainer(config=config, loader=loader)
    trainer.start_tunning()
    config.logger.end()
예제 #3
0
def experiment_1(trainable: bool):
    if trainable:
        config = get_experiment_1_config(
            experiment_name='experiment_1_trainable_true')
    else:
        config = get_experiment_1_config(
            experiment_name='experiment_1_trainable_false')
    config.logger.start()
    loader = ImageDataLoader(config)
    input_shape = config.input_shape
    logging.info(f"input_shape:{input_shape}")
    number_of_classes = len(loader.labbel_mapper.classes_name)
    logging.info(f"number_of_classes:{number_of_classes}")
    trainer = Trainer(config=config, loader=loader)
    trainer.start(model=get_mobilenet(
        hidden_activation=config.hidden_activation,
        output_activation=config.output_activation,
        input_shape=input_shape,
        number_of_classes=number_of_classes,
        trainable=trainable),
                  run_id="mobilenet_model")

    trainer.start(model=get_vgg16(hidden_activation=config.hidden_activation,
                                  output_activation=config.output_activation,
                                  input_shape=input_shape,
                                  number_of_classes=number_of_classes,
                                  trainable=trainable),
                  run_id="vgg16_model")

    trainer.start(model=get_densenet121(
        hidden_activation=config.hidden_activation,
        output_activation=config.output_activation,
        input_shape=input_shape,
        number_of_classes=number_of_classes,
        trainable=trainable),
                  run_id="densenet121_model")

    trainer.start(model=get_resnet50(
        hidden_activation=config.hidden_activation,
        output_activation=config.output_activation,
        input_shape=input_shape,
        number_of_classes=number_of_classes,
        trainable=trainable),
                  run_id="resnet50_model")

    trainer.start(model=get_cnn(hidden_activation=config.hidden_activation,
                                output_activation=config.output_activation,
                                input_shape=input_shape,
                                number_of_classes=number_of_classes),
                  run_id="cnn_model")

    config.logger.end()
예제 #4
0
def experiment_3_evaluate():
    config = get_experiment_3_config()
    config.logger.start()
    loader = ImageDataLoader(config)
    input_shape = config.input_shape
    logging.info(f"input_shape:{input_shape}")
    number_of_classes = len(loader.labbel_mapper.classes_name)
    logging.info(f"number_of_classes:{number_of_classes}")
    trainer = Trainer(config=config, loader=loader)
    trainer.evaluate(run_id='cnn_model',
                     test_data=loader.test_data,
                     steps=loader.test_data_info.count)
    config.logger.end()
def main():
    config = get_experiment_1_config()
    logger = Logger(config)
    logger.start()
    loader = ImageDataLoader(config)
    input_shape = config.input_shape
    logging.info(f"input_shape:{input_shape}")
    number_of_classes = len(loader.labbel_mapper.labels)
    logging.info(f"number_of_classes:{number_of_classes}")
    trainer = Trainer(config=config, loader=loader, logger=logger)
    trainer.start(model=get_cnn(hidden_activation=config.hidden_activation,
                                output_activation=config.output_activation,
                                input_shape=input_shape,
                                number_of_classes=number_of_classes))
    logger.end()
예제 #6
0
 def get_data_loader(self):
     return ImageDataLoader(self.config)