from src import dataModifier as DM from keras.preprocessing.text import Tokenizer dataJS = DM.json_load("data/train.json/train.json") TextTypes = ["description"] AnswerTypes = ["interest_level"] tupeConvert = {"interest_level": {"low": 0, "medium": 1, "high": 2}} TextData = np.asarray(DM.get_arr(dataJS, TextTypes)) AnswerData = np.array( DM.get_arr(DM.modifier_fiches_type(dataJS, tupeConvert), AnswerTypes)) X = TextData Y = DM.to_one_hot(AnswerData) #нормализация np.random.seed(2) indices = DM.mixedIndex(X) X = X[indices] Y = Y[indices] val_split = int(X.shape[0] * 0.6) X_train = X[:val_split] X_val = X[val_split:] Y_train = Y[:val_split] Y_val = Y[val_split:]
Time = DM.time_to_HMS(DM.fullData_to_time(FullTimeData)) X = np.column_stack((DigitData, Data, Time)) X = np.asarray(X).astype('float32') Y = np.asarray(Y).astype('int') #нормализация np.random.seed(2) indices = DM.mixedIndex(X) X = X[indices] Y = Y[indices] #нормализация X = DM.normalization(X) Y = DM.to_one_hot(Y) from keras import models from keras import layers from keras import regularizers from keras.optimizers import RMSprop model = models.Sequential() model.add(layers.Dense(32, activation='relu', input_shape=(X.shape[1], ))) model.add(layers.Dropout(0.15)) model.add(layers.Dense(32, activation='relu')) model.add(layers.Dropout(0.02)) #model.add(layers.Dense(32,activation='relu')) #model.add(layers.Dense(16,activation='relu')) model.add(layers.Dense(3, activation='softmax'))