args = parser.parse_args() #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # print("---" * 100) writer, device, rng, path_save_model, path_save_model_train, name_input = init_all_for_run(args) print("LOAD CIPHER") print() cipher = init_cipher(args) creator_data_binary = Create_data_binary(args, cipher, rng) #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- print("---" * 100) print("STEP 1 : LOAD/ TRAIN NN REF") print() print("COUNTINUOUS LEARNING: "+ str(args.countinuous_learning) + " | CURRICULUM LEARNING: " + str(args.curriculum_learning) + " | MODEL: " + str(args.type_model)) print() """nombre_round_eval = args.nombre_round_eval args.nombre_round_eval = nombre_round_eval - 2 nn_model_ref2 = NN_Model_Ref(args, writer, device, rng, path_save_model, cipher, creator_data_binary, path_save_model_train) nn_model_ref2.epochs = 10 nn_model_ref2.train_general(name_input) args.nombre_round_eval = nombre_round_eval - 1 nn_model_ref3 = NN_Model_Ref(args, writer, device, rng, path_save_model, cipher, creator_data_binary, path_save_model_train)
parser.add_argument("--diff", default=config.train_nn.diff, type=str2hexa) args = parser.parse_args() #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # print("---" * 100) writer, device, rng, path_save_model, path_save_model_train, name_input = init_all_for_run(args) print("LOAD CIPHER") print() cipher = init_cipher(args) creator_data_binary = Create_data_binary(args, cipher, rng) #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- print("---" * 100) print("STEP 1 : LOAD/ TRAIN NN REF") print() print("COUNTINUOUS LEARNING: "+ str(args.countinuous_learning) + " | CURRICULUM LEARNING: " + str(args.curriculum_learning) + " | MODEL: " + str(args.type_model)) print() """nombre_round_eval = args.nombre_round_eval args.nombre_round_eval = nombre_round_eval - 2 nn_model_ref2 = NN_Model_Ref(args, writer, device, rng, path_save_model, cipher, creator_data_binary, path_save_model_train) nn_model_ref2.epochs = 10 nn_model_ref2.train_general(name_input) args.nombre_round_eval = nombre_round_eval - 1 nn_model_ref3 = NN_Model_Ref(args, writer, device, rng, path_save_model, cipher, creator_data_binary, path_save_model_train)
args = parser.parse_args() args.logs_tensorboard = args.logs_tensorboard.replace("test", "feature_as_inpput") #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # print("---" * 100) writer, device, rng, path_save_model, path_save_model_train, name_input = init_all_for_run(args) print("LOAD CIPHER") print() cipher = init_cipher(args) creator_data_binary = Create_data_binary(args, cipher, rng) #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- print("---" * 100) print("STEP 1 : LOAD/ TRAIN NN REF") print() print("COUNTINUOUS LEARNING: "+ str(args.countinuous_learning) + " | CURRICULUM LEARNING: " + str(args.curriculum_learning) + " | MODEL: " + str(args.type_model)) print() """nombre_round_eval = args.nombre_round_eval args.nombre_round_eval = nombre_round_eval - 2 nn_model_ref2 = NN_Model_Ref(args, writer, device, rng, path_save_model, cipher, creator_data_binary, path_save_model_train) nn_model_ref2.epochs = 10 nn_model_ref2.train_general(name_input) args.nombre_round_eval = nombre_round_eval - 1 nn_model_ref3 = NN_Model_Ref(args, writer, device, rng, path_save_model, cipher, creator_data_binary, path_save_model_train)