def Train_Dataset(self, root_dir, coco_dir, img_dir, set_dir, batch_size=8, image_size=512, use_gpu=True, num_workers=3): self.system_dict["dataset"]["train"]["root_dir"] = root_dir; self.system_dict["dataset"]["train"]["coco_dir"] = coco_dir; self.system_dict["dataset"]["train"]["img_dir"] = img_dir; self.system_dict["dataset"]["train"]["set_dir"] = set_dir; self.system_dict["params"]["batch_size"] = batch_size; self.system_dict["params"]["image_size"] = image_size; self.system_dict["params"]["use_gpu"] = use_gpu; self.system_dict["params"]["num_workers"] = num_workers; if(self.system_dict["params"]["use_gpu"]): if torch.cuda.is_available(): self.system_dict["local"]["num_gpus"] = torch.cuda.device_count() torch.cuda.manual_seed(123) else: torch.manual_seed(123) self.system_dict["local"]["training_params"] = {"batch_size": self.system_dict["params"]["batch_size"] * self.system_dict["local"]["num_gpus"], "shuffle": True, "drop_last": True, "collate_fn": collater, "num_workers": self.system_dict["params"]["num_workers"]} self.system_dict["local"]["training_set"] = CocoDataset(root_dir=self.system_dict["dataset"]["train"]["root_dir"] + "/" + self.system_dict["dataset"]["train"]["coco_dir"], img_dir = self.system_dict["dataset"]["train"]["img_dir"], set_dir = self.system_dict["dataset"]["train"]["set_dir"], transform = transforms.Compose([Normalizer(), Augmenter(), Resizer()])) self.system_dict["local"]["training_generator"] = DataLoader(self.system_dict["local"]["training_set"], **self.system_dict["local"]["training_params"]);
def Val_Dataset(self, root_dir, coco_dir, img_dir, set_dir): self.system_dict["dataset"]["val"]["status"] = True self.system_dict["dataset"]["val"]["root_dir"] = root_dir self.system_dict["dataset"]["val"]["coco_dir"] = coco_dir self.system_dict["dataset"]["val"]["img_dir"] = img_dir self.system_dict["dataset"]["val"]["set_dir"] = set_dir self.system_dict["local"]["val_params"] = { "batch_size": self.system_dict["params"]["batch_size"], "shuffle": False, "drop_last": False, "collate_fn": collater, "num_workers": self.system_dict["params"]["num_workers"] } self.system_dict["local"]["val_set"] = CocoDataset( root_dir=self.system_dict["dataset"]["val"]["root_dir"] + "/" + self.system_dict["dataset"]["val"]["coco_dir"], img_dir=self.system_dict["dataset"]["val"]["img_dir"], set_dir=self.system_dict["dataset"]["val"]["set_dir"], transform=transforms.Compose([Normalizer(), Resizer()])) self.system_dict["local"]["test_generator"] = DataLoader( self.system_dict["local"]["val_set"], **self.system_dict["local"]["val_params"])
def test(opt): model = torch.load(opt.pretrained_model).module model.cuda() dataset = CocoDataset(opt.data_path, set='val2017', transform=transforms.Compose( [Normalizer(), Resizer()])) if os.path.isdir(opt.output): shutil.rmtree(opt.output) os.makedirs(opt.output) for index in range(len(dataset)): data = dataset[index] scale = data['scale'] image_info = dataset.coco.loadImgs(dataset.image_ids[index])[0] with torch.no_grad(): tb = datetime.now() scores, labels, boxes = model(data['img'].cuda().permute( 2, 0, 1).float().unsqueeze(dim=0)) boxes /= scale te = datetime.now() print(te, image_info['file_name'] + " cost " + str(te - tb)) if boxes.shape[0] > 0: #image_info = dataset.coco.loadImgs(dataset.image_ids[index])[0] #path = os.path.join(dataset.root_dir, 'images', dataset.set_name, image_info['file_name']) path = os.path.join(dataset.root_dir, dataset.set_name, image_info['file_name']) print("read from ", path) output_image = cv2.imread(path) for box_id in range(boxes.shape[0]): pred_prob = float(scores[box_id]) if pred_prob < opt.cls_threshold: break pred_label = int(labels[box_id]) xmin, ymin, xmax, ymax = boxes[box_id, :] color = colors[pred_label] cv2.rectangle(output_image, (xmin, ymin), (xmax, ymax), color, 2) text_size = cv2.getTextSize( COCO_CLASSES[pred_label] + ' : %.2f' % pred_prob, cv2.FONT_HERSHEY_PLAIN, 1, 1)[0] cv2.rectangle( output_image, (xmin, ymin), (xmin + text_size[0] + 3, ymin + text_size[1] + 4), color, -1) cv2.putText(output_image, COCO_CLASSES[pred_label] + ' : %.2f' % pred_prob, (xmin, ymin + text_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1) cv2.imwrite( "{}/{}_prediction.jpg".format(opt.output, image_info["file_name"][:-4]), output_image)
def test(opt): model = SSD(backbone=ResNet()) checkpoint = torch.load(opt.pretrained_model) model.load_state_dict(checkpoint["model_state_dict"]) if torch.cuda.is_available(): model.cuda() model.eval() dboxes = generate_dboxes() test_set = CocoDataset(opt.data_path, 2017, "val", SSDTransformer(dboxes, (300, 300), val=True)) encoder = Encoder(dboxes) if os.path.isdir(opt.output): shutil.rmtree(opt.output) os.makedirs(opt.output) for img, img_id, img_size, _, _ in test_set: if img is None: continue if torch.cuda.is_available(): img = img.cuda() with torch.no_grad(): ploc, plabel = model(img.unsqueeze(dim=0)) result = encoder.decode_batch(ploc, plabel, opt.nms_threshold, 20)[0] loc, label, prob = [r.cpu().numpy() for r in result] best = np.argwhere(prob > opt.cls_threshold).squeeze(axis=1) loc = loc[best] label = label[best] prob = prob[best] if len(loc) > 0: path = test_set.coco.loadImgs(img_id)[0]["file_name"] output_img = cv2.imread( os.path.join(opt.data_path, "val2017", path)) height, width, _ = output_img.shape loc[:, 0::2] *= width loc[:, 1::2] *= height loc = loc.astype(np.int32) for box, lb, pr in zip(loc, label, prob): category = test_set.label_info[lb] color = colors[lb] xmin, ymin, xmax, ymax = box cv2.rectangle(output_img, (xmin, ymin), (xmax, ymax), color, 2) text_size = cv2.getTextSize(category + " : %.2f" % pr, cv2.FONT_HERSHEY_PLAIN, 1, 1)[0] cv2.rectangle( output_img, (xmin, ymin), (xmin + text_size[0] + 3, ymin + text_size[1] + 4), color, -1) cv2.putText(output_img, category + " : %.2f" % pr, (xmin, ymin + text_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1) cv2.imwrite( "{}/{}_prediction.jpg".format(opt.output, path[:-4]), output_img)
def train(opt): num_gpus = 1 if torch.cuda.is_available(): num_gpus = torch.cuda.device_count() torch.cuda.manual_seed(123) else: torch.manual_seed(123) training_params = { "batch_size": opt.batch_size * num_gpus, "shuffle": True, "drop_last": True, "collate_fn": collater, "num_workers": 12 } test_params = { "batch_size": opt.batch_size, "shuffle": False, "drop_last": False, "collate_fn": collater, "num_workers": 12 } training_set = CocoDataset(root_dir=opt.data_path, set="train2017", transform=transforms.Compose( [Normalizer(), Augmenter(), Resizer()])) training_generator = DataLoader(training_set, **training_params) test_set = CocoDataset(root_dir=opt.data_path, set="val2017", transform=transforms.Compose( [Normalizer(), Resizer()])) test_generator = DataLoader(test_set, **test_params) model = EfficientDet(num_classes=training_set.num_classes()) if os.path.isdir(opt.log_path): shutil.rmtree(opt.log_path) os.makedirs(opt.log_path) if not os.path.isdir(opt.saved_path): os.makedirs(opt.saved_path) writer = SummaryWriter(opt.log_path) if torch.cuda.is_available(): model = model.cuda() model = nn.DataParallel(model) optimizer = torch.optim.Adam(model.parameters(), opt.lr) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True) best_loss = 1e5 best_epoch = 0 model.train() num_iter_per_epoch = len(training_generator) for epoch in range(opt.num_epochs): model.train() # if torch.cuda.is_available(): # model.module.freeze_bn() # else: # model.freeze_bn() epoch_loss = [] progress_bar = tqdm(training_generator) for iter, data in enumerate(progress_bar): try: optimizer.zero_grad() if torch.cuda.is_available(): cls_loss, reg_loss = model( [data['img'].cuda().float(), data['annot'].cuda()]) else: cls_loss, reg_loss = model( [data['img'].float(), data['annot']]) cls_loss = cls_loss.mean() reg_loss = reg_loss.mean() loss = cls_loss + reg_loss if loss == 0: continue loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) optimizer.step() epoch_loss.append(float(loss)) total_loss = np.mean(epoch_loss) progress_bar.set_description( 'Epoch: {}/{}. Iteration: {}/{}. Cls loss: {:.5f}. Reg loss: {:.5f}. Batch loss: {:.5f} Total loss: {:.5f}' .format(epoch + 1, opt.num_epochs, iter + 1, num_iter_per_epoch, cls_loss, reg_loss, loss, total_loss)) writer.add_scalar('Train/Total_loss', total_loss, epoch * num_iter_per_epoch + iter) writer.add_scalar('Train/Regression_loss', reg_loss, epoch * num_iter_per_epoch + iter) writer.add_scalar('Train/Classfication_loss (focal loss)', cls_loss, epoch * num_iter_per_epoch + iter) except Exception as e: print(e) continue scheduler.step(np.mean(epoch_loss)) if epoch % opt.test_interval == 0: model.eval() loss_regression_ls = [] loss_classification_ls = [] for iter, data in enumerate(test_generator): with torch.no_grad(): if torch.cuda.is_available(): cls_loss, reg_loss = model( [data['img'].cuda().float(), data['annot'].cuda()]) else: cls_loss, reg_loss = model( [data['img'].float(), data['annot']]) cls_loss = cls_loss.mean() reg_loss = reg_loss.mean() loss_classification_ls.append(float(cls_loss)) loss_regression_ls.append(float(reg_loss)) cls_loss = np.mean(loss_classification_ls) reg_loss = np.mean(loss_regression_ls) loss = cls_loss + reg_loss print( 'Epoch: {}/{}. Classification loss: {:1.5f}. Regression loss: {:1.5f}. Total loss: {:1.5f}' .format(epoch + 1, opt.num_epochs, cls_loss, reg_loss, np.mean(loss))) writer.add_scalar('Test/Total_loss', loss, epoch) writer.add_scalar('Test/Regression_loss', reg_loss, epoch) writer.add_scalar('Test/Classfication_loss (focal loss)', cls_loss, epoch) if loss + opt.es_min_delta < best_loss: best_loss = loss best_epoch = epoch torch.save( model, os.path.join(opt.saved_path, "signatrix_efficientdet_coco.pth")) dummy_input = torch.rand(opt.batch_size, 3, 512, 512) if torch.cuda.is_available(): dummy_input = dummy_input.cuda() if isinstance(model, nn.DataParallel): model.module.backbone_net.model.set_swish( memory_efficient=False) torch.onnx.export(model.module, dummy_input, os.path.join( opt.saved_path, "signatrix_efficientdet_coco.onnx"), verbose=False, opset_version=11) model.module.backbone_net.model.set_swish( memory_efficient=True) else: model.backbone_net.model.set_swish(memory_efficient=False) torch.onnx.export(model, dummy_input, os.path.join( opt.saved_path, "signatrix_efficientdet_coco.onnx"), verbose=False, opset_version=11) model.backbone_net.model.set_swish(memory_efficient=True) # Early stopping if epoch - best_epoch > opt.es_patience > 0: print( "Stop training at epoch {}. The lowest loss achieved is {}" .format(epoch, loss)) break writer.close()
def test(opt): test_set = CocoDataset(opt.data_path, set='val2017', transform=transforms.Compose( [Normalizer(), Resizer()])) opt.num_classes = test_set.num_classes() opt.batch_size = opt.batch_size * 4 test_params = { "batch_size": opt.batch_size, "shuffle": False, "drop_last": False, "collate_fn": collater, "num_workers": 12 } test_generator = DataLoader(test_set, **test_params) model = EfficientDet(opt) model.load_state_dict( torch.load(os.path.join(opt.pretrained_model, opt.network + '.pth'))) model.cuda() model.set_is_training(False) model.eval() if os.path.isdir(opt.prediction_dir): shutil.rmtree(opt.prediction_dir) os.makedirs(opt.prediction_dir) progress_bar = tqdm(test_generator) progress_bar.set_description_str(' Evaluating') IoU_scores = [] for i, data in enumerate(progress_bar): scale = data['scale'] with torch.no_grad(): output_list = model(data['img'].cuda().float()) for j, output in enumerate(output_list): scores, labels, boxes = output annot = data['annot'][j] annot = annot[annot[:, 4] != -1] # print(scores.size(), labels.size(), boxes.size(), annot.size()) if boxes.shape[0] == 0: if annot.size(0) == 0: IoU_scores.append(1.0) else: IoU_scores.append(0.0) continue if annot.size(0) == 0: IoU_scores.append(0.0) else: classes = set(annot[:, 4].tolist()) cat = torch.cat( [scores.view(-1, 1), labels.view(-1, 1).float(), boxes], dim=1) cat = cat[cat[:, 0] >= opt.cls_threshold] iou_score = [] for c in classes: box = cat[cat[:, 1] == c][:, 2:] if box.size(0) == 0: iou_score.append(0.0) continue tgt = annot[annot[:, 4] == c][:, :4] iou_s = iou(box, tgt.cuda()) iou_score.append(iou_s.cpu().numpy()) classes_pre = set(cat[:, 1].tolist()) for c in classes_pre: if c not in classes: iou_score.append(0) # print(classes_pre, classes ,iou_score) IoU_scores.append(sum(iou_score) / len(iou_score)) if writePIC: annot /= scale[j] boxes /= scale[j] image_info = test_set.coco.loadImgs( test_set.image_ids[i * opt.batch_size + j])[0] # print(image_info['file_name']) path = os.path.join(test_set.root_dir, 'images', test_set.set_name, image_info['file_name']) output_image = cv2.imread(path) # print(output_image.shape) for box_id in range(boxes.shape[0]): pred_prob = float(scores[box_id]) if pred_prob < opt.cls_threshold: break pred_label = int(labels[box_id]) xmin, ymin, xmax, ymax = boxes[box_id, :] color = colors[pred_label] cv2.rectangle(output_image, (xmin, ymin), (xmax, ymax), color, 1) text_size = cv2.getTextSize( COCO_CLASSES[pred_label] + ' : %.2f' % pred_prob, cv2.FONT_HERSHEY_PLAIN, 1, 1)[0] cv2.rectangle( output_image, (xmin, ymin), (xmin + text_size[0] + 3, ymin + text_size[1] + 4), color, -1) cv2.putText( output_image, COCO_CLASSES[pred_label] + ' : %.2f' % pred_prob, (xmin, ymin + text_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1) for box_id in range(annot.size(0)): xmin, ymin, xmax, ymax = annot[box_id, :4] cv2.rectangle(output_image, (xmin, ymin), (xmax, ymax), (255, 0, 0), 1) cv2.imwrite( "{}/{}_prediction.jpg".format( opt.prediction_dir, image_info["file_name"][:-4]), output_image) print(sum(IoU_scores) / len(IoU_scores))
def main(opt): if torch.cuda.is_available(): torch.distributed.init_process_group(backend='nccl', init_method='env://') num_gpus = torch.distributed.get_world_size() torch.cuda.manual_seed(123) else: torch.manual_seed(123) num_gpus = 1 train_params = { "batch_size": opt.batch_size * num_gpus, "shuffle": True, "drop_last": False, "num_workers": opt.num_workers, "collate_fn": collate_fn } test_params = { "batch_size": opt.batch_size * num_gpus, "shuffle": False, "drop_last": False, "num_workers": opt.num_workers, "collate_fn": collate_fn } if opt.model == "ssd": dboxes = generate_dboxes(model="ssd") model = SSD(backbone=ResNet(), num_classes=len(coco_classes)) else: dboxes = generate_dboxes(model="ssdlite") model = SSDLite(backbone=MobileNetV2(), num_classes=len(coco_classes)) train_set = CocoDataset(opt.data_path, 2017, "train", SSDTransformer(dboxes, (300, 300), val=False)) train_loader = DataLoader(train_set, **train_params) test_set = CocoDataset(opt.data_path, 2017, "val", SSDTransformer(dboxes, (300, 300), val=True)) test_loader = DataLoader(test_set, **test_params) encoder = Encoder(dboxes) opt.lr = opt.lr * num_gpus * (opt.batch_size / 32) criterion = Loss(dboxes) optimizer = torch.optim.SGD(model.parameters(), lr=opt.lr, momentum=opt.momentum, weight_decay=opt.weight_decay, nesterov=True) scheduler = MultiStepLR(optimizer=optimizer, milestones=opt.multistep, gamma=0.1) if torch.cuda.is_available(): model.cuda() criterion.cuda() if opt.amp: from apex import amp from apex.parallel import DistributedDataParallel as DDP model, optimizer = amp.initialize(model, optimizer, opt_level='O1') else: from torch.nn.parallel import DistributedDataParallel as DDP # It is recommended to use DistributedDataParallel, instead of DataParallel # to do multi-GPU training, even if there is only a single node. model = DDP(model) if os.path.isdir(opt.log_path): shutil.rmtree(opt.log_path) os.makedirs(opt.log_path) if not os.path.isdir(opt.save_folder): os.makedirs(opt.save_folder) checkpoint_path = os.path.join(opt.save_folder, "SSD.pth") writer = SummaryWriter(opt.log_path) if os.path.isfile(checkpoint_path): checkpoint = torch.load(checkpoint_path) first_epoch = checkpoint["epoch"] + 1 model.module.load_state_dict(checkpoint["model_state_dict"]) scheduler.load_state_dict(checkpoint["scheduler"]) optimizer.load_state_dict(checkpoint["optimizer"]) else: first_epoch = 0 for epoch in range(first_epoch, opt.epochs): train(model, train_loader, epoch, writer, criterion, optimizer, scheduler, opt.amp) evaluate(model, test_loader, epoch, writer, encoder, opt.nms_threshold) checkpoint = { "epoch": epoch, "model_state_dict": model.module.state_dict(), "optimizer": optimizer.state_dict(), "scheduler": scheduler.state_dict() } torch.save(checkpoint, checkpoint_path)
def train(opt): num_gpus = 1 if torch.cuda.is_available(): num_gpus = torch.cuda.device_count() else: raise Exception('no GPU') cudnn.benchmark = True training_params = { "batch_size": opt.batch_size * num_gpus, "shuffle": True, "drop_last": True, "collate_fn": collater, "num_workers": 12 } test_params = { "batch_size": opt.batch_size, "shuffle": False, "drop_last": False, "collate_fn": collater, "num_workers": 12 } training_set = CocoDataset(root_dir=opt.data_path, set="train2017", transform=transforms.Compose( [Normalizer(), Augmenter(), Resizer()])) training_generator = DataLoader(training_set, **training_params) test_set = CocoDataset(root_dir=opt.data_path, set="val2017", transform=transforms.Compose( [Normalizer(), Resizer()])) test_generator = DataLoader(test_set, **test_params) opt.num_classes = training_set.num_classes() model = EfficientDet(opt) if opt.resume: print('Loading model...') model.load_state_dict( torch.load(os.path.join(opt.saved_path, opt.network + '.pth'))) if not os.path.isdir(opt.saved_path): os.makedirs(opt.saved_path) model = model.cuda() model = nn.DataParallel(model) optimizer = torch.optim.AdamW(model.parameters(), opt.lr) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True) best_loss = 1e5 best_epoch = 0 model.train() num_iter_per_epoch = len(training_generator) for epoch in range(opt.num_epochs): print('Epoch: {}/{}:'.format(epoch + 1, opt.num_epochs)) model.train() epoch_loss = [] progress_bar = tqdm(training_generator) for iter, data in enumerate(progress_bar): try: optimizer.zero_grad() if torch.cuda.is_available(): cls_loss, cls_2_loss, reg_loss = model( [data['img'].cuda().float(), data['annot'].cuda()]) else: cls_loss, cls_2_loss, reg_loss = model( [data['img'].float(), data['annot']]) cls_loss = cls_loss.mean() reg_loss = reg_loss.mean() cls_2_loss = cls_2_loss.mean() loss = cls_loss + cls_2_loss + reg_loss if loss == 0: continue loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) optimizer.step() epoch_loss.append(float(loss)) total_loss = np.mean(epoch_loss) progress_bar.set_description( 'Epoch: {}/{}. Iteration: {}/{}'.format( epoch + 1, opt.num_epochs, iter + 1, num_iter_per_epoch)) progress_bar.write( 'Cls loss: {:.5f}\tReg loss: {:.5f}\tCls+Reg loss: {:.5f}\tBatch loss: {:.5f}\tTotal loss: {:.5f}' .format(cls_loss, reg_loss, cls_loss + reg_loss, loss, total_loss)) except Exception as e: print(e) continue scheduler.step(np.mean(epoch_loss)) if epoch % opt.test_interval == 0: model.eval() loss_regression_ls = [] loss_classification_ls = [] loss_classification_2_ls = [] progress_bar = tqdm(test_generator) progress_bar.set_description_str(' Evaluating') for iter, data in enumerate(progress_bar): with torch.no_grad(): if torch.cuda.is_available(): cls_loss, cls_2_loss, reg_loss = model( [data['img'].cuda().float(), data['annot'].cuda()]) else: cls_loss, cls_2_loss, reg_loss = model( [data['img'].float(), data['annot']]) cls_loss = cls_loss.mean() cls_2_loss = cls_2_loss.mean() reg_loss = reg_loss.mean() loss_classification_ls.append(float(cls_loss)) loss_classification_2_ls.append(float(cls_2_loss)) loss_regression_ls.append(float(reg_loss)) cls_loss = np.mean(loss_classification_ls) cls_2_loss = np.mean(loss_classification_2_ls) reg_loss = np.mean(loss_regression_ls) loss = cls_loss + cls_2_loss + reg_loss print( 'Epoch: {}/{}. \nClassification loss: {:1.5f}. \tClassification_2 loss: {:1.5f}. \tRegression loss: {:1.5f}. \tTotal loss: {:1.5f}' .format(epoch + 1, opt.num_epochs, cls_loss, cls_2_loss, reg_loss, np.mean(loss))) if loss + opt.es_min_delta < best_loss: print('Saving model...') best_loss = loss best_epoch = epoch torch.save(model.module.state_dict(), os.path.join(opt.saved_path, opt.network + '.pth')) # torch.save(model, os.path.join(opt.saved_path, opt.network+'.pth')) # Early stopping if epoch - best_epoch > opt.es_patience > 0: print( "Stop training at epoch {}. The lowest loss achieved is {}" .format(epoch, loss)) break
if not len(results): return # write output json.dump(results, open('{}_bbox_results.json'.format(dataset.set_name), 'w'), indent=4) # load results in COCO evaluation tool coco_true = dataset.coco coco_pred = coco_true.loadRes('{}_bbox_results.json'.format( dataset.set_name)) # run COCO evaluation coco_eval = COCOeval(coco_true, coco_pred, 'bbox') coco_eval.params.imgIds = image_ids coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() if __name__ == '__main__': efficientdet = torch.load( "trained_models/signatrix_efficientdet_coco.pth").module efficientdet.cuda() dataset_val = CocoDataset("data/COCO", set='val2017', transform=transforms.Compose( [Normalizer(), Resizer()])) evaluate_coco(dataset_val, efficientdet)
def Train_Dataset(self, root_dir, coco_dir, img_dir, set_dir, batch_size=8, image_size=512, use_gpu=True, num_workers=3): ''' User function: Set training dataset parameters Dataset Directory Structure root_dir | |------coco_dir | | | |----img_dir | | | |------<set_dir_train> (set_dir) (Train) | | | |---------img1.jpg | |---------img2.jpg | |---------..........(and so on) | | | |---annotations | |----| | |--------------------instances_Train.json (instances_<set_dir_train>.json) | |--------------------classes.txt - instances_Train.json -> In proper COCO format - classes.txt -> A list of classes in alphabetical order For TrainSet - root_dir = "../sample_dataset"; - coco_dir = "kangaroo"; - img_dir = "images"; - set_dir = "Train"; Note: Annotation file name too coincides against the set_dir Args: root_dir (str): Path to root directory containing coco_dir coco_dir (str): Name of coco_dir containing image folder and annotation folder img_dir (str): Name of folder containing all training and validation folders set_dir (str): Name of folder containing all training images batch_size (int): Mini batch sampling size for training epochs image_size (int): Either of [512, 300] use_gpu (bool): If True use GPU else run on CPU num_workers (int): Number of parallel processors for data loader Returns: None ''' self.system_dict["dataset"]["train"]["root_dir"] = root_dir; self.system_dict["dataset"]["train"]["coco_dir"] = coco_dir; self.system_dict["dataset"]["train"]["img_dir"] = img_dir; self.system_dict["dataset"]["train"]["set_dir"] = set_dir; self.system_dict["params"]["batch_size"] = batch_size; self.system_dict["params"]["image_size"] = image_size; self.system_dict["params"]["use_gpu"] = use_gpu; self.system_dict["params"]["num_workers"] = num_workers; if(self.system_dict["params"]["use_gpu"]): if torch.cuda.is_available(): self.system_dict["local"]["num_gpus"] = torch.cuda.device_count() torch.cuda.manual_seed(123) else: torch.manual_seed(123) self.system_dict["local"]["training_params"] = {"batch_size": self.system_dict["params"]["batch_size"] * self.system_dict["local"]["num_gpus"], "shuffle": True, "drop_last": True, "collate_fn": collater, "num_workers": self.system_dict["params"]["num_workers"]} self.system_dict["local"]["training_set"] = CocoDataset(root_dir=self.system_dict["dataset"]["train"]["root_dir"] + "/" + self.system_dict["dataset"]["train"]["coco_dir"], img_dir = self.system_dict["dataset"]["train"]["img_dir"], set_dir = self.system_dict["dataset"]["train"]["set_dir"], transform = transforms.Compose([Normalizer(), Resizer()])) #Augmenter(), self.system_dict["local"]["training_generator"] = DataLoader(self.system_dict["local"]["training_set"], **self.system_dict["local"]["training_params"]);
def Val_Dataset(self, root_dir, coco_dir, img_dir, set_dir): ''' User function: Set training dataset parameters Dataset Directory Structure root_dir | |------coco_dir | | | |----img_dir | | | |------<set_dir_val> (set_dir) (Validation) | | | |---------img1.jpg | |---------img2.jpg | |---------..........(and so on) | | | |---annotations | |----| | |--------------------instances_Val.json (instances_<set_dir_val>.json) | |--------------------classes.txt - instances_Train.json -> In proper COCO format - classes.txt -> A list of classes in alphabetical order For ValSet - root_dir = "..sample_dataset"; - coco_dir = "kangaroo"; - img_dir = "images"; - set_dir = "Val"; Note: Annotation file name too coincides against the set_dir Args: root_dir (str): Path to root directory containing coco_dir coco_dir (str): Name of coco_dir containing image folder and annotation folder img_dir (str): Name of folder containing all training and validation folders set_dir (str): Name of folder containing all validation images Returns: None ''' self.system_dict["dataset"]["val"]["status"] = True; self.system_dict["dataset"]["val"]["root_dir"] = root_dir; self.system_dict["dataset"]["val"]["coco_dir"] = coco_dir; self.system_dict["dataset"]["val"]["img_dir"] = img_dir; self.system_dict["dataset"]["val"]["set_dir"] = set_dir; self.system_dict["local"]["val_params"] = {"batch_size": self.system_dict["params"]["batch_size"], "shuffle": False, "drop_last": False, "collate_fn": collater, "num_workers": self.system_dict["params"]["num_workers"]} self.system_dict["local"]["val_set"] = CocoDataset(root_dir=self.system_dict["dataset"]["val"]["root_dir"] + "/" + self.system_dict["dataset"]["val"]["coco_dir"], img_dir = self.system_dict["dataset"]["val"]["img_dir"], set_dir = self.system_dict["dataset"]["val"]["set_dir"], transform=transforms.Compose([Normalizer(), Resizer()])) self.system_dict["local"]["test_generator"] = DataLoader(self.system_dict["local"]["val_set"], **self.system_dict["local"]["val_params"])
if not len(results): return # write output json.dump(results, open('{}_bbox_results.json'.format(dataset.set_name), 'w'), indent=4) # load results in COCO evaluation tool coco_true = dataset.coco coco_pred = coco_true.loadRes('{}_bbox_results.json'.format( dataset.set_name)) # run COCO evaluation coco_eval = COCOeval(coco_true, coco_pred, 'bbox') coco_eval.params.imgIds = image_ids coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() if __name__ == '__main__': efficientdet = torch.load( "trained_models/signatrix_efficientdet_coco.pth").module efficientdet.cuda() dataset_val = CocoDataset("/disk4t/data/coco/data/coco", set='val2017', transform=transforms.Compose( [Normalizer(), Resizer()])) evaluate_coco(dataset_val, efficientdet)
return # write output json.dump(results, open('{}_bbox_results.json'.format(dataset.set_name), 'w'), indent=4) # load results in COCO evaluation tool coco_true = dataset.coco coco_pred = coco_true.loadRes('{}_bbox_results.json'.format( dataset.set_name)) # run COCO evaluation coco_eval = COCOeval(coco_true, coco_pred, 'bbox') coco_eval.params.imgIds = image_ids coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() if __name__ == '__main__': #load model efficientdet = torch.load(args.model).module efficientdet.cuda() dataset_val = CocoDataset(args.dataset, set='val2017', transform=transforms.Compose( [Normalizer(), Resizer()])) evaluate_coco(dataset_val, efficientdet)
def train(opt): num_gpus = 1 if torch.cuda.is_available(): num_gpus = torch.cuda.device_count() torch.cuda.manual_seed(123) else: torch.manual_seed(123) training_params = { "batch_size": opt.batch_size * num_gpus, "shuffle": True, "drop_last": True, "collate_fn": collater, "num_workers": 12 } test_params = { "batch_size": opt.batch_size, "shuffle": False, "drop_last": False, "collate_fn": collater, "num_workers": 12 } training_set = CocoDataset(root_dir=opt.data_path, set="train2017", transform=transforms.Compose( [Normalizer(), Augmenter(), Resizer()])) training_generator = DataLoader(training_set, **training_params) test_set = CocoDataset(root_dir=opt.data_path, set="val2017", transform=transforms.Compose( [Normalizer(), Resizer()])) test_generator = DataLoader(test_set, **test_params) channels_map = { 'efficientnet-b0': [40, 80, 192], 'efficientnet-b1': [40, 80, 192], 'efficientnet-b2': [48, 88, 208], 'efficientnet-b3': [48, 96, 232], 'efficientnet-b4': [56, 112, 272], 'efficientnet-b5': [64, 128, 304], 'efficientnet-b6': [72, 144, 344], 'efficientnet-b7': [80, 160, 384], 'efficientnet-b8': [80, 160, 384] } if os.path.isdir(opt.log_path): shutil.rmtree(opt.log_path) os.makedirs(opt.log_path) if not os.path.isdir(opt.saved_path): os.makedirs(opt.saved_path) writer = SummaryWriter(opt.log_path) if opt.resume: resume_path = os.path.join(opt.saved_path, 'signatrix_efficientdet_coco_latest.pth') model = torch.load(resume_path).module print("model loaded from {}".format(resume_path)) else: model = EfficientDet( num_classes=training_set.num_classes(), network=opt.backbone_network, remote_loading=opt.remote_loading, advprop=opt.advprop, conv_in_channels=channels_map[opt.backbone_network]) print("model created with backbone {}, advprop {}".format( opt.backbone_network, opt.advprop)) if torch.cuda.is_available(): model = model.cuda() model = nn.DataParallel(model) if opt.resume: m = round(opt.start_epoch / 100) opt.lr = opt.lr * (0.1**m) optimizer = torch.optim.Adam(model.parameters(), opt.lr) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True) best_loss = 1e5 best_epoch = 0 model.train() num_iter_per_epoch = len(training_generator) start_epoch = 0 if opt.resume: start_epoch = opt.start_epoch for epoch in range(start_epoch, opt.num_epochs): model.train() # if torch.cuda.is_available(): # model.module.freeze_bn() # else: # model.freeze_bn() epoch_loss = [] progress_bar = tqdm(training_generator) for iter, data in enumerate(progress_bar): try: optimizer.zero_grad() if torch.cuda.is_available(): cls_loss, reg_loss = model( [data['img'].cuda().float(), data['annot'].cuda()]) else: cls_loss, reg_loss = model( [data['img'].float(), data['annot']]) cls_loss = cls_loss.mean() reg_loss = reg_loss.mean() loss = cls_loss + reg_loss if loss == 0: continue loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) optimizer.step() epoch_loss.append(float(loss)) total_loss = np.mean(epoch_loss) progress_bar.set_description( '{} Epoch: {}/{}. Iteration: {}/{}. Cls loss: {:.5f}. Reg loss: {:.5f}. Batch loss: {:.5f} Total loss: {:.5f}' .format(datetime.now(), epoch + 1, opt.num_epochs, iter + 1, num_iter_per_epoch, cls_loss, reg_loss, loss, total_loss)) writer.add_scalar('Train/Total_loss', total_loss, epoch * num_iter_per_epoch + iter) writer.add_scalar('Train/Regression_loss', reg_loss, epoch * num_iter_per_epoch + iter) writer.add_scalar('Train/Classfication_loss (focal loss)', cls_loss, epoch * num_iter_per_epoch + iter) except Exception as e: print(e) continue scheduler.step(np.mean(epoch_loss)) if epoch % opt.test_interval == 0: model.eval() loss_regression_ls = [] loss_classification_ls = [] for iter, data in enumerate(test_generator): with torch.no_grad(): if torch.cuda.is_available(): cls_loss, reg_loss = model( [data['img'].cuda().float(), data['annot'].cuda()]) else: cls_loss, reg_loss = model( [data['img'].float(), data['annot']]) cls_loss = cls_loss.mean() reg_loss = reg_loss.mean() loss_classification_ls.append(float(cls_loss)) loss_regression_ls.append(float(reg_loss)) cls_loss = np.mean(loss_classification_ls) reg_loss = np.mean(loss_regression_ls) loss = cls_loss + reg_loss print( '{} Epoch: {}/{}. Classification loss: {:1.5f}. Regression loss: {:1.5f}. Total loss: {:1.5f}' .format(datetime.now(), epoch + 1, opt.num_epochs, cls_loss, reg_loss, np.mean(loss))) writer.add_scalar('Test/Total_loss', loss, epoch) writer.add_scalar('Test/Regression_loss', reg_loss, epoch) writer.add_scalar('Test/Classfication_loss (focal loss)', cls_loss, epoch) if loss + opt.es_min_delta < best_loss: best_loss = loss best_epoch = epoch torch.save( model, os.path.join( opt.saved_path, "signatrix_efficientdet_coco_best_epoch{}.pth".format( epoch))) ''' dummy_input = torch.rand(opt.batch_size, 3, 512, 512) if torch.cuda.is_available(): dummy_input = dummy_input.cuda() if isinstance(model, nn.DataParallel): model.module.backbone_net.model.set_swish(memory_efficient=False) torch.onnx.export(model.module, dummy_input, os.path.join(opt.saved_path, "signatrix_efficientdet_coco.onnx"), verbose=False) model.module.backbone_net.model.set_swish(memory_efficient=True) else: model.backbone_net.model.set_swish(memory_efficient=False) torch.onnx.export(model, dummy_input, os.path.join(opt.saved_path, "signatrix_efficientdet_coco.onnx"), verbose=False) model.backbone_net.model.set_swish(memory_efficient=True) ''' print("epoch:", epoch, "best_epoch:", best_epoch, "epoch - best_epoch=", epoch - best_epoch) # Early stopping if epoch - best_epoch > opt.es_patience > 0: print( "Stop training at epoch {}. The lowest loss achieved is {}" .format(epoch, loss)) break if epoch % opt.save_interval == 0: torch.save( model, os.path.join(opt.saved_path, "signatrix_efficientdet_coco_latest.pth")) writer.close()