예제 #1
0
def train(opt):
    #print('decay', opt.num_decay_epochs)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(123)
    else:
        torch.manual_seed(123)
    if os.path.isdir(opt.log_path):
        shutil.rmtree(opt.log_path)
    os.makedirs(opt.log_path)
    writer = SummaryWriter(opt.log_path)
    env = Tetris(width=opt.width, height=opt.height,
                 block_size=opt.block_size)  #高さ、幅、1ブロックの大きさを指定
    model = DeepQNetwork()  #インスタンス生成
    #optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
    optimizer = torch.optim.SGD(model.parameters(), lr=opt.lr)
    criterion = nn.MSELoss()

    state = env.reset()  # 初期状態 tensor([0., 0., 0., 0.])
    if torch.cuda.is_available():
        model.cuda()
        state = state.cuda()

    replay_memory = deque(maxlen=opt.replay_memory_size)  #maxで30000、
    epoch = 0
    while epoch < opt.num_epochs:  # 指定したエポック数繰り返す
        #1ピース目の取りうる全ての行動に対して、それぞれ状態を計算  {(左から何番目か,何回転か):tensor([,,,]),*n}
        next_steps = env.get_next_states()
        # εグリーディー的なやつ
        #epsilon = opt.final_epsilon + (max(opt.num_decay_epochs - epoch, 0) * (  #num_decay_epochs以降一定
        #        opt.initial_epsilon - opt.final_epsilon) / opt.num_decay_epochs)
        epsilon = opt.initial_epsilon - opt.initial_epsilon * epoch / opt.num_epochs  #直線
        u = random()  # 0~1
        random_action = u <= epsilon  # True, False

        next_actions, next_states = zip(
            *next_steps.items())  #next_stepsのkeyとvalueを取得 #( , )*n
        next_states = torch.stack(next_states)  # tensor([[ , , , ],*n])
        if torch.cuda.is_available():
            next_states = next_states.cuda()
        model.eval()
        with torch.no_grad():
            predictions = model(
                next_states
            )[:, 0]  #DeepQNetworkのforward #tensor([,~,])これはそれぞれの行動に対するQ値のようなもの
        model.train()
        # next_stepsのインデックスをランダムor最適で指定
        if random_action:  # ランダムな行動
            index = randint(0, len(next_steps) - 1)
        else:  # 最適な行動(最大のpredictionsに基づく)
            index = torch.argmax(predictions).item()

        # 行動と次の状態を決定
        next_state = next_states[
            index, :]  #ある行動を選択したときの次の状態 #tensor([ , , , ])
        action = next_actions[index]  #行動 #(左から何番目か,何回転か)

        reward, done = env.step(
            action, epoch, render=False)  #行動を実行、報酬(スコア)を求める、溢れた場合done=True、描画

        if torch.cuda.is_available():
            next_state = next_state.cuda()
        replay_memory.append(
            [state, reward, next_state, done]
        )  #deque([[tensor([0., 0., 0., 0.]), 1, tensor([0., 0., 2., 4.]), False]],..., maxlen=30000)

        if done:  # 溢れた場合 or 上限100手
            final_score = env.score
            final_tetrominoes = env.tetrominoes
            final_cleared_lines = env.cleared_lines
            cleared_lines1 = env.cleared_lines1
            cleared_lines2 = env.cleared_lines2
            cleared_lines3 = env.cleared_lines3
            cleared_lines4 = env.cleared_lines4
            state = env.reset()  # 初期状態 tensor([0., 0., 0., 0.])
            if torch.cuda.is_available():
                state = state.cuda()
        else:  # 溢れてない場合
            state = next_state  # 状態を更新  tensor([0., 1., 2., 5.])とか
            continue  #while epoch~に戻る
        #if len(replay_memory) < opt.replay_memory_size / 1000:  #溢れた場合判定(累計ピースが3000以下ならcontinue)
        #continue  #pass
        # 累計ピースが3000に到達した後、溢れる毎に以下を実行
        epoch += 1
        batch = sample(
            replay_memory, min(len(replay_memory), opt.batch_size)
        )  #replay_memoryからbatch_size個ランダムに取り出す(len(replay_memory) < opt.batch_sizeのときはlen(replay_memory)個取り出す)
        replay_memory.clear()  #中身を全消去

        state_batch, reward_batch, next_state_batch, done_batch = zip(*batch)
        state_batch = torch.stack(
            tuple(state for state in
                  state_batch))  #tensor([[0., 26., 16., 62.],*batch_size個])
        reward_batch = torch.from_numpy(
            np.array(reward_batch,
                     dtype=np.float32)[:, None])  #tensor([[1.],*batch_size個])
        next_state_batch = torch.stack(
            tuple(
                state for state in
                next_state_batch))  #tensor([[0., 32., 13., 72.],*batch_size個])

        if torch.cuda.is_available():
            state_batch = state_batch.cuda()
            reward_batch = reward_batch.cuda()
            next_state_batch = next_state_batch.cuda()

        q_values = model(
            state_batch)  #予測Q値、q_values=tensor([[0.1810],*batch_size個])
        model.eval()
        with torch.no_grad():
            next_prediction_batch = model(next_state_batch)  #次の状態に対する予測Q値
        model.train()
        # Q値の正解値を更新式で求める
        y_batch = torch.cat(
            tuple(reward if done else reward + opt.gamma * prediction
                  for reward, done, prediction in zip(
                      reward_batch, done_batch, next_prediction_batch)))[:,
                                                                         None]

        optimizer.zero_grad()  #最適化アルゴリズム
        loss = criterion(q_values, y_batch)  #損失関数はmse、q_values:予測値、y_batch:正解値
        """
        length = len(q_values)
        errors = np.zeros([length])
        print('size', len(q_values), len(y_batch))
        for i in range(length):
            print('Q', q_values[i])
            print('Y', y_batch[i])
            errors[i] = (q_values[i] - y_batch[i]) ** 2
        error = np.mean(errors)
        print('error', error)
        print('loss',loss)
        """
        loss.backward()
        optimizer.step()

        if epoch % 10 == 0:
            print(
                "Epoch: {}/{}, Action: {}, Score: {}, Tetrominoes {}, Cleared lines: {}"
                .format(epoch, opt.num_epochs, action, final_score,
                        final_tetrominoes, final_cleared_lines))
        #学習中のスコアをcsvに記録
        if epoch == 1:
            with open('Score_train.csv', mode='w',
                      newline="") as Score_train_Record:
                writer = csv.writer(Score_train_Record)
                writer.writerow([
                    epoch, final_tetrominoes, final_score, final_cleared_lines,
                    cleared_lines1, cleared_lines2, cleared_lines3,
                    cleared_lines4
                ])
        else:
            with open('Score_train.csv', mode='a',
                      newline="") as Score_train_Record:
                writer = csv.writer(Score_train_Record)
                writer.writerow([
                    epoch, final_tetrominoes, final_score, final_cleared_lines,
                    cleared_lines1, cleared_lines2, cleared_lines3,
                    cleared_lines4
                ])
        """
        writer.add_scalar('Train/Score', final_score, epoch - 1)
        writer.add_scalar('Train/Tetrominoes', final_tetrominoes, epoch - 1)
        writer.add_scalar('Train/Cleared lines', final_cleared_lines, epoch - 1)
        """

        if epoch > 0 and epoch % opt.save_interval == 0:
            torch.save(model, "{}/tetris2_{}".format(
                opt.saved_path, epoch))  #定期的にモデルをtrained_modelsに保存

        if final_tetrominoes > 500:  #ミノ数が500を超えたモデルの重みとバイアスをcsvに保存
            save_model_parameter(model)

    torch.save(model,
               "{}/tetris2".format(opt.saved_path))  #学習後のモデルをtrained_modelsに保存
예제 #2
0
def train(opt):
    if torch.cuda.is_available():
        # 随机数种子seed确定时,模型的训练结果将始终保持一致
        torch.cuda.manual_seed(123)
    else:
        torch.manual_seed(123)
    if os.path.isdir(opt.log_path):
        shutil.rmtree(opt.log_path)
    os.makedirs(opt.log_path)
    writer = SummaryWriter(opt.log_path)
    env = Tetris(width=opt.width, height=opt.height, block_size=opt.block_size)
    model = DeepQNetwork()
    optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
    criterion = nn.MSELoss()

    state = env.reset()
    if torch.cuda.is_available():
        model.cuda()
        state = state.cuda()

    replay_memory = deque(maxlen=opt.replay_memory_size)
    epoch = 0
    while epoch < opt.num_epochs:
        # 得到所有可能的下落方块
        next_steps = env.get_next_states()
        # Exploration or exploitation
        epsilon = opt.final_epsilon + (
            max(opt.num_decay_epochs - epoch, 0) *
            (opt.initial_epsilon - opt.final_epsilon) / opt.num_decay_epochs)
        u = random()
        random_action = u <= epsilon
        # 下一步落下的横向坐标以及旋转,以及得到下方方块的board状态
        next_actions, next_states = zip(*next_steps.items())
        next_states = torch.stack(next_states)
        if torch.cuda.is_available():
            next_states = next_states.cuda()
        model.eval()
        with torch.no_grad():
            predictions = model(next_states)[:, 0]
        model.train()
        # 采取的动作
        if random_action:
            index = randint(0, len(next_steps) - 1)
        else:
            index = torch.argmax(predictions).item()

        next_state = next_states[index, :]
        action = next_actions[index]

        reward, done = env.step(action, render=False)

        if torch.cuda.is_available():
            next_state = next_state.cuda()
        replay_memory.append([state, reward, next_state, done])
        if done:
            final_score = env.score
            final_tetrominoes = env.tetrominoes
            final_cleared_lines = env.cleared_lines
            state = env.reset()
            if torch.cuda.is_available():
                state = state.cuda()
        else:
            state = next_state
            continue
        if len(replay_memory) < opt.replay_memory_size / 10:
            continue
        epoch += 1
        batch = sample(replay_memory, min(len(replay_memory), opt.batch_size))
        '''
        a = [2, 3, 4], b = [5, 6, 7], c = [a, b]
        e, f, g = zip(*c)
        e = (2, 5), f = (3, 6), g = (4, 7) 类型为tuple
        '''
        state_batch, reward_batch, next_state_batch, done_batch = zip(*batch)
        state_batch = torch.stack(tuple(state for state in state_batch))
        reward_batch = torch.from_numpy(
            np.array(reward_batch, dtype=np.float32)[:, None])
        next_state_batch = torch.stack(
            tuple(state for state in next_state_batch))

        if torch.cuda.is_available():
            state_batch = state_batch.cuda()
            reward_batch = reward_batch.cuda()
            next_state_batch = next_state_batch.cuda()

        q_values = model(state_batch)
        model.eval()
        # Q_target
        with torch.no_grad():
            next_prediction_batch = model(next_state_batch)
        model.train()

        y_batch = torch.cat(
            tuple(reward if done else reward + opt.gamma * prediction
                  for reward, done, prediction in zip(
                      reward_batch, done_batch, next_prediction_batch)))[:,
                                                                         None]

        optimizer.zero_grad()
        loss = criterion(q_values, y_batch)
        loss.backward()
        optimizer.step()

        print(
            "Epoch: {}/{}, Action: {}, Score: {}, Tetrominoes {}, Cleared lines: {}"
            .format(epoch, opt.num_epochs, action, final_score,
                    final_tetrominoes, final_cleared_lines))
        writer.add_scalar('Train/Score', final_score, epoch - 1)
        writer.add_scalar('Train/Tetrominoes', final_tetrominoes, epoch - 1)
        writer.add_scalar('Train/Cleared lines', final_cleared_lines,
                          epoch - 1)

        if epoch > 0 and epoch % opt.save_interval == 0:
            torch.save(model, "{}/tetris_{}".format(opt.saved_path, epoch))

    torch.save(model, "{}/tetris".format(opt.saved_path))
예제 #3
0
def train(opt):
    if torch.cuda.is_available():
        torch.cuda.manual_seed(123)
    else:
        torch.manual_seed(123)
    model = DeepQNetwork()
    model_target = DeepQNetwork()
    if os.path.isdir(opt.log_path):
        shutil.rmtree(opt.log_path)
    os.makedirs(opt.log_path)
    writer = SummaryWriter(opt.log_path)
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-6)
    criterion = nn.MSELoss()
    game_state = FlappyBird()
    image, reward, terminal, score = game_state.next_frame(0)
    image = pre_processing(
        image[:game_state.screen_width, :int(game_state.base_y)],
        opt.image_size, opt.image_size)
    image = torch.from_numpy(image)
    if torch.cuda.is_available():
        model.cuda()
        model_target.cuda()
        image = image.cuda()
    state = torch.cat(tuple(image for _ in range(4)))[None, :, :, :]
    model_target.eval()
    replay_memory = []
    iter = 0
    while iter < opt.num_iters:
        prediction = model(state)[0]
        # Exploration or exploitation
        epsilon = opt.final_epsilon + (
            (opt.num_iters - iter) *
            (opt.initial_epsilon - opt.final_epsilon) / opt.num_iters)
        u = random()
        random_action = u <= epsilon
        if random_action:
            #print("Perform a random action")
            action = randint(0, 1)
        else:
            action = torch.argmax(prediction).item()

        next_image, reward, terminal, score = game_state.next_frame(action)
        next_image = pre_processing(
            next_image[:game_state.screen_width, :int(game_state.base_y)],
            opt.image_size, opt.image_size)
        next_image = torch.from_numpy(next_image)
        if torch.cuda.is_available():
            next_image = next_image.cuda()
        next_state = torch.cat((state[0, 1:, :, :], next_image))[None, :, :, :]
        replay_memory.append([state, action, reward, next_state, terminal])
        if len(replay_memory) > opt.replay_memory_size:
            del replay_memory[0]
        batch = sample(replay_memory, min(len(replay_memory), opt.batch_size))
        state_batch, action_batch, reward_batch, next_state_batch, terminal_batch = zip(
            *batch)

        state_batch = torch.cat(tuple(state for state in state_batch))
        action_batch = torch.from_numpy(
            np.array([[1, 0] if action == 0 else [0, 1]
                      for action in action_batch],
                     dtype=np.float32))
        reward_batch = torch.from_numpy(
            np.array(reward_batch, dtype=np.float32)[:, None])
        next_state_batch = torch.cat(tuple(state
                                           for state in next_state_batch))

        if torch.cuda.is_available():
            state_batch = state_batch.cuda()
            action_batch = action_batch.cuda()
            reward_batch = reward_batch.cuda()
            next_state_batch = next_state_batch.cuda()
        current_prediction_batch = model(state_batch)
        next_prediction_batch = model_target(next_state_batch)

        y_batch = torch.cat(
            tuple(reward if terminal else reward +
                  opt.gamma * prediction[max_action]
                  for reward, terminal, prediction, max_action in zip(
                      reward_batch, terminal_batch, next_prediction_batch,
                      torch.argmax(model(next_state_batch), axis=1))))

        q_value = torch.sum(current_prediction_batch * action_batch, dim=1)
        optimizer.zero_grad()
        # y_batch = y_batch.detach()
        loss = criterion(q_value, y_batch)
        loss.backward()
        optimizer.step()

        state = next_state

        if iter % opt.target_update_freq == 0:
            model_target.load_state_dict(model.state_dict())

        iter += 1
        if iter % 100 == 0:
            print(
                "Test::Double Q: Iteration: {}/{}, Action: {}, Loss: {}, Epsilon {}, Reward: {}, Q-value: {}"
                .format(iter + 1, opt.num_iters, action, loss, epsilon, reward,
                        torch.max(prediction)))
        writer.add_scalar('Train/Loss', loss, iter)
        writer.add_scalar('Train/Epsilon', epsilon, iter)
        writer.add_scalar('Train/Reward', reward, iter)
        writer.add_scalar('Train/Q-value', torch.max(prediction), iter)
        writer.add_scalar('Train/score', score, iter)
        if (iter + 1) % 1000000 == 0:
            torch.save(model,
                       "{}/flappy_bird_{}".format(opt.saved_path, iter + 1))
    torch.save(model, "{}/flappy_bird".format(opt.saved_path))
예제 #4
0
def train(opt):

    if torch.cuda.is_available():
        torch.cuda.manual_seed(123)
    else:
        torch.manual_seed(123)

    # TensorBoard
    if os.path.isdir(opt.log_path):
        shutil.rmtree(opt.log_path)

    os.makedirs(opt.log_path)
    writer = SummaryWriter(opt.log_path)
    
    # Modelo
    CHECKPOINT_FILE = opt.saved_path + "/" + opt.checkpoint_name

    if opt.load:
        if os.path.isfile(CHECKPOINT_FILE):
            print("--> Carregando Checkpoint '{}'.".format(CHECKPOINT_FILE))
            
            if torch.cuda.is_available():
                model = torch.load(CHECKPOINT_FILE)
            else:
                model = torch.load(CHECKPOINT_FILE, map_location=lambda storage, loc: storage)
            
            print("--> Checkpoint Carregado '{}'.".format(CHECKPOINT_FILE))

        else:
            print("--> Checkpoint '{}' não encontrado.".format(CHECKPOINT_FILE))
            model = DeepQNetwork()
    else:
        model = DeepQNetwork()

    optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
    criterion = nn.MSELoss()

    # Environment
    env = Tetris(width=opt.width, height=opt.height)

    state = env.reset()
    if torch.cuda.is_available():
        model.cuda()
        state = state.cuda()

    replay_memory = deque(maxlen=opt.replay_memory_size)
    epoch = 0
    prev_loss = 0

    # Épocas do Checkpoint
    if opt.load and "_" in opt.checkpoint_name:
        start_epoch = opt.checkpoint_name.split("_")[-1]
        epoch = int(start_epoch)
        print("Checkpoint com {} épocas.".format(epoch))


    # Loop de Treino
    while epoch < opt.num_epochs:
        next_steps = env.get_next_states()
        
        # Exploração ou Explotação
        epsilon = opt.final_epsilon + (max(opt.num_decay_epochs - epoch, 0) * (
                opt.initial_epsilon - opt.final_epsilon) / opt.num_decay_epochs)
        u = random()
        random_action = u <= epsilon
        next_actions, next_states = zip(*next_steps.items())
        next_states = torch.stack(next_states)

        if torch.cuda.is_available():
            next_states = next_states.cuda()

        model.eval()
        with torch.no_grad():
            predictions = model(next_states)[:, 0]

        model.train()
        if random_action:
            index = randint(0, len(next_steps) - 1)
        else:
            index = torch.argmax(predictions).item()

        next_state = next_states[index, :]
        action = next_actions[index]

        reward, done = env.step(action, render=True)

        if torch.cuda.is_available():
            next_state = next_state.cuda()

        replay_memory.append([state, reward, next_state, done])

        if done:
            final_score = env.score
            final_tetrominoes = env.tetrominoes
            final_cleared_lines = env.cleared_lines
            state = env.reset()
            if torch.cuda.is_available():
                state = state.cuda()
        else:
            state = next_state
            continue

        # Replay Buffer
        if len(replay_memory) < opt.replay_memory_size / 10:
            print("replay_memory ", len(replay_memory))
            continue
        
        epoch += 1
        batch = sample(replay_memory, min(len(replay_memory), opt.batch_size))
        state_batch, reward_batch, next_state_batch, done_batch = zip(*batch)
        state_batch = torch.stack(tuple(state for state in state_batch))
        reward_batch = torch.from_numpy(np.array(reward_batch, dtype=np.float32)[:, None])
        next_state_batch = torch.stack(tuple(state for state in next_state_batch))

        # Aprendizado
        if torch.cuda.is_available():
            state_batch = state_batch.cuda()
            reward_batch = reward_batch.cuda()
            next_state_batch = next_state_batch.cuda()

        q_values = model(state_batch)
        model.eval()
        with torch.no_grad():
            next_prediction_batch = model(next_state_batch)
        model.train()

        y_batch = torch.cat(
            tuple(reward if done else reward + opt.gamma * prediction for reward, done, prediction in
                  zip(reward_batch, done_batch, next_prediction_batch)))[:, None]

        optimizer.zero_grad()
        loss = criterion(q_values, y_batch)
        loss.backward()
        optimizer.step()

        prev_loss = loss.item()

        print("Epoch: {}/{}, Action: {}, Score: {}, Tetrominoes {}, Cleared lines: {}".format(
            epoch,
            opt.num_epochs,
            action,
            final_score,
            final_tetrominoes,
            final_cleared_lines))
        writer.add_scalar('Train/Score', final_score, epoch - 1)
        writer.add_scalar('Train/Tetrominoes', final_tetrominoes, epoch - 1)
        writer.add_scalar('Train/Cleared lines', final_cleared_lines, epoch - 1)

        if epoch > 0 and epoch % opt.save_interval == 0:
            torch.save(model, "{}/{}_{}".format(opt.saved_path, opt.saved_name, epoch))

    torch.save(model, "{}/{}".format(opt.saved_path, opt.saved_name))
예제 #5
0
def test(opt, conv1, conv2, conv3):
    if torch.cuda.is_available():
        torch.cuda.manual_seed(123)
    else:
        torch.manual_seed(123)
    # if torch.cuda.is_available():
    #     model = torch.load("{}/tetris".format(opt.saved_path))
    # else:
    #     model = torch.load("{}/tetris".format(opt.saved_path), map_location=lambda storage, loc: storage)

    model = DeepQNetwork()
    model.eval()
    if False:  # save weights
        ii = 1
        for layer in model.modules():
            if isinstance(layer, nn.Linear):
                if ii == 1:
                    weights1 = layer.weight.cpu()
                    weights1 = weights1.detach().numpy()
                    pd.DataFrame(weights1).to_csv(
                        'trained_models/conv{}.csv'.format(ii))
                if ii == 2:
                    weights2 = layer.weight.cpu()
                    weights2 = weights2.detach().numpy()
                    pd.DataFrame(weights2).to_csv(
                        'trained_models/conv{}.csv'.format(ii))
                if ii == 3:
                    weights3 = layer.weight.cpu()
                    weights3 = weights3.detach().numpy()
                    pd.DataFrame(weights3).to_csv(
                        'trained_models/conv{}.csv'.format(ii))
                ii += 1
    if False:  # load csv weights
        ii = 1
        for layer in model.modules():
            if isinstance(layer, nn.Linear):
                with torch.no_grad():
                    if ii == 1:
                        layer.weight.data = torch.Tensor(conv1).cuda()
                    if ii == 2:
                        layer.weight.data = torch.Tensor(conv2).cuda()
                    if ii == 3:
                        layer.weight.data = torch.Tensor(conv1).cuda()
                    ii += 1

    env = Tetris(width=opt.width, height=opt.height, block_size=opt.block_size)
    env.reset()
    if torch.cuda.is_available():
        model.cuda()
    out = cv2.VideoWriter(
        opt.output, cv2.VideoWriter_fourcc(*"MJPG"), opt.fps,
        (int(1.5 * opt.width * opt.block_size), opt.height * opt.block_size))
    while True:
        next_steps = env.get_next_states()
        next_actions, next_states = zip(*next_steps.items())
        next_states = torch.stack(next_states)
        if torch.cuda.is_available():
            next_states = next_states.cuda()
        predictions = model(next_states)[:, 0]
        index = torch.argmax(predictions).item()
        action = next_actions[index]
        result, done = env.step(action, render=True, video=out)

        if done:
            out.release()
            return result
예제 #6
0
def train(opt):
    if torch.cuda.is_available():
        torch.cuda.manual_seed(123)
    else:
        torch.manual_seed(123)
    if os.path.isdir(opt.log_path):
        shutil.rmtree(opt.log_path)
    os.makedirs(opt.log_path)
    writer = SummaryWriter(opt.log_path)
    env = Tetris(width=opt.width, height=opt.height, block_size=opt.block_size)
    model = DeepQNetwork()
    model_target = DeepQNetwork()
    optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
    criterion = nn.MSELoss()

    state = env.reset()
    if torch.cuda.is_available():
        model.cuda()
        model_target.cuda()
        state = state.cuda()

    if opt.PER:
        replay_memory = Memory(capacity=opt.replay_memory_size)
    else:
        replay_memory = deque(maxlen=opt.replay_memory_size)

    epoch = 0
    warmup_epoch = 0
    while epoch < opt.num_epochs:
        next_steps = env.get_next_states()
        # Exploration or exploitation
        epsilon = opt.final_epsilon + (
            max(opt.num_decay_epochs - epoch, 0) *
            (opt.initial_epsilon - opt.final_epsilon) / opt.num_decay_epochs)
        u = random()
        random_action = u <= epsilon
        next_actions, next_states = zip(*next_steps.items())
        next_states = torch.stack(next_states)
        if torch.cuda.is_available():
            next_states = next_states.cuda()
        model.eval()
        with torch.no_grad():
            predictions = model(next_states)[:, 0]
        model.train()
        if random_action:
            index = randint(0, len(next_steps) - 1)
        else:
            index = torch.argmax(predictions).item()

        next_state = next_states[index, :]
        action = next_actions[index]

        reward, done = env.step(action, render=True)

        if torch.cuda.is_available():
            next_state = next_state.cuda()

        if opt.PER:
            experience = state, action, reward, next_state, done
            replay_memory.store(experience)
        else:
            replay_memory.append([state, reward, next_state, done])

        if done:
            final_score = env.score
            final_tetrominoes = env.tetrominoes
            final_cleared_lines = env.cleared_lines
            state = env.reset()
            if torch.cuda.is_available():
                state = state.cuda()
        else:
            state = next_state
            continue
        warmup_epoch += 1
        if warmup_epoch < opt.learning_starts:
            continue
        epoch += 1

        if opt.PER:
            tree_idx, batch = replay_memory.sample(opt.batch_size)
        else:
            batch = sample(replay_memory,
                           min(len(replay_memory), opt.batch_size))

        state_batch, _, reward_batch, next_state_batch, done_batch = zip(
            *batch)
        state_batch = torch.stack(tuple(state for state in state_batch))
        reward_batch = torch.from_numpy(
            np.array(reward_batch, dtype=np.float32)[:, None])
        next_state_batch = torch.stack(
            tuple(state for state in next_state_batch))

        if torch.cuda.is_available():
            state_batch = state_batch.cuda()
            reward_batch = reward_batch.cuda()
            next_state_batch = next_state_batch.cuda()

        q_values = model(state_batch)
        model_target.eval()
        with torch.no_grad():
            next_prediction_batch = model_target(next_state_batch)
        model_target.train()

        y_batch = torch.cat(
            tuple(reward if done else reward + opt.gamma * prediction
                  for reward, done, prediction in zip(
                      reward_batch, done_batch, next_prediction_batch)))[:,
                                                                         None]

        optimizer.zero_grad()
        loss = criterion(q_values, y_batch)
        loss.backward()
        optimizer.step()

        model.eval()
        model_target.eval()
        if opt.PER:
            with torch.no_grad():
                if torch.cuda.is_available():
                    replay_memory.batch_update(
                        tree_idx,
                        np.abs(q_values.detach().cpu().numpy() -
                               y_batch.cpu().numpy()))
                else:
                    replay_memory.batch_update(
                        tree_idx,
                        np.abs(q_values.detach().numpy() - y_batch.numpy()))

        # Update target model <- model
        if epoch % opt.target_update_freq == 0:
            with torch.no_grad():
                model_target.load_state_dict(model.state_dict())
        model_target.train()
        model.eval()

        print(
            "Epoch: {}/{}, Action: {}, Score: {}, Tetrominoes {}, Cleared lines: {}"
            .format(epoch, opt.num_epochs, action, final_score,
                    final_tetrominoes, final_cleared_lines))
        writer.add_scalar('Train/Score', final_score, epoch - 1)
        writer.add_scalar('Train/Tetrominoes', final_tetrominoes, epoch - 1)
        writer.add_scalar('Train/Cleared lines', final_cleared_lines,
                          epoch - 1)

        if (epoch > 0
                and epoch % opt.save_interval) == 0 or final_score >= 10000.0:
            torch.save(model, "{}/tetris_{}".format(opt.saved_path, epoch))

    torch.save(model, "{}/tetris".format(opt.saved_path))