def train(opt): #print('decay', opt.num_decay_epochs) if torch.cuda.is_available(): torch.cuda.manual_seed(123) else: torch.manual_seed(123) if os.path.isdir(opt.log_path): shutil.rmtree(opt.log_path) os.makedirs(opt.log_path) writer = SummaryWriter(opt.log_path) env = Tetris(width=opt.width, height=opt.height, block_size=opt.block_size) #高さ、幅、1ブロックの大きさを指定 model = DeepQNetwork() #インスタンス生成 #optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr) optimizer = torch.optim.SGD(model.parameters(), lr=opt.lr) criterion = nn.MSELoss() state = env.reset() # 初期状態 tensor([0., 0., 0., 0.]) if torch.cuda.is_available(): model.cuda() state = state.cuda() replay_memory = deque(maxlen=opt.replay_memory_size) #maxで30000、 epoch = 0 while epoch < opt.num_epochs: # 指定したエポック数繰り返す #1ピース目の取りうる全ての行動に対して、それぞれ状態を計算 {(左から何番目か,何回転か):tensor([,,,]),*n} next_steps = env.get_next_states() # εグリーディー的なやつ #epsilon = opt.final_epsilon + (max(opt.num_decay_epochs - epoch, 0) * ( #num_decay_epochs以降一定 # opt.initial_epsilon - opt.final_epsilon) / opt.num_decay_epochs) epsilon = opt.initial_epsilon - opt.initial_epsilon * epoch / opt.num_epochs #直線 u = random() # 0~1 random_action = u <= epsilon # True, False next_actions, next_states = zip( *next_steps.items()) #next_stepsのkeyとvalueを取得 #( , )*n next_states = torch.stack(next_states) # tensor([[ , , , ],*n]) if torch.cuda.is_available(): next_states = next_states.cuda() model.eval() with torch.no_grad(): predictions = model( next_states )[:, 0] #DeepQNetworkのforward #tensor([,~,])これはそれぞれの行動に対するQ値のようなもの model.train() # next_stepsのインデックスをランダムor最適で指定 if random_action: # ランダムな行動 index = randint(0, len(next_steps) - 1) else: # 最適な行動(最大のpredictionsに基づく) index = torch.argmax(predictions).item() # 行動と次の状態を決定 next_state = next_states[ index, :] #ある行動を選択したときの次の状態 #tensor([ , , , ]) action = next_actions[index] #行動 #(左から何番目か,何回転か) reward, done = env.step( action, epoch, render=False) #行動を実行、報酬(スコア)を求める、溢れた場合done=True、描画 if torch.cuda.is_available(): next_state = next_state.cuda() replay_memory.append( [state, reward, next_state, done] ) #deque([[tensor([0., 0., 0., 0.]), 1, tensor([0., 0., 2., 4.]), False]],..., maxlen=30000) if done: # 溢れた場合 or 上限100手 final_score = env.score final_tetrominoes = env.tetrominoes final_cleared_lines = env.cleared_lines cleared_lines1 = env.cleared_lines1 cleared_lines2 = env.cleared_lines2 cleared_lines3 = env.cleared_lines3 cleared_lines4 = env.cleared_lines4 state = env.reset() # 初期状態 tensor([0., 0., 0., 0.]) if torch.cuda.is_available(): state = state.cuda() else: # 溢れてない場合 state = next_state # 状態を更新 tensor([0., 1., 2., 5.])とか continue #while epoch~に戻る #if len(replay_memory) < opt.replay_memory_size / 1000: #溢れた場合判定(累計ピースが3000以下ならcontinue) #continue #pass # 累計ピースが3000に到達した後、溢れる毎に以下を実行 epoch += 1 batch = sample( replay_memory, min(len(replay_memory), opt.batch_size) ) #replay_memoryからbatch_size個ランダムに取り出す(len(replay_memory) < opt.batch_sizeのときはlen(replay_memory)個取り出す) replay_memory.clear() #中身を全消去 state_batch, reward_batch, next_state_batch, done_batch = zip(*batch) state_batch = torch.stack( tuple(state for state in state_batch)) #tensor([[0., 26., 16., 62.],*batch_size個]) reward_batch = torch.from_numpy( np.array(reward_batch, dtype=np.float32)[:, None]) #tensor([[1.],*batch_size個]) next_state_batch = torch.stack( tuple( state for state in next_state_batch)) #tensor([[0., 32., 13., 72.],*batch_size個]) if torch.cuda.is_available(): state_batch = state_batch.cuda() reward_batch = reward_batch.cuda() next_state_batch = next_state_batch.cuda() q_values = model( state_batch) #予測Q値、q_values=tensor([[0.1810],*batch_size個]) model.eval() with torch.no_grad(): next_prediction_batch = model(next_state_batch) #次の状態に対する予測Q値 model.train() # Q値の正解値を更新式で求める y_batch = torch.cat( tuple(reward if done else reward + opt.gamma * prediction for reward, done, prediction in zip( reward_batch, done_batch, next_prediction_batch)))[:, None] optimizer.zero_grad() #最適化アルゴリズム loss = criterion(q_values, y_batch) #損失関数はmse、q_values:予測値、y_batch:正解値 """ length = len(q_values) errors = np.zeros([length]) print('size', len(q_values), len(y_batch)) for i in range(length): print('Q', q_values[i]) print('Y', y_batch[i]) errors[i] = (q_values[i] - y_batch[i]) ** 2 error = np.mean(errors) print('error', error) print('loss',loss) """ loss.backward() optimizer.step() if epoch % 10 == 0: print( "Epoch: {}/{}, Action: {}, Score: {}, Tetrominoes {}, Cleared lines: {}" .format(epoch, opt.num_epochs, action, final_score, final_tetrominoes, final_cleared_lines)) #学習中のスコアをcsvに記録 if epoch == 1: with open('Score_train.csv', mode='w', newline="") as Score_train_Record: writer = csv.writer(Score_train_Record) writer.writerow([ epoch, final_tetrominoes, final_score, final_cleared_lines, cleared_lines1, cleared_lines2, cleared_lines3, cleared_lines4 ]) else: with open('Score_train.csv', mode='a', newline="") as Score_train_Record: writer = csv.writer(Score_train_Record) writer.writerow([ epoch, final_tetrominoes, final_score, final_cleared_lines, cleared_lines1, cleared_lines2, cleared_lines3, cleared_lines4 ]) """ writer.add_scalar('Train/Score', final_score, epoch - 1) writer.add_scalar('Train/Tetrominoes', final_tetrominoes, epoch - 1) writer.add_scalar('Train/Cleared lines', final_cleared_lines, epoch - 1) """ if epoch > 0 and epoch % opt.save_interval == 0: torch.save(model, "{}/tetris2_{}".format( opt.saved_path, epoch)) #定期的にモデルをtrained_modelsに保存 if final_tetrominoes > 500: #ミノ数が500を超えたモデルの重みとバイアスをcsvに保存 save_model_parameter(model) torch.save(model, "{}/tetris2".format(opt.saved_path)) #学習後のモデルをtrained_modelsに保存
def train(opt): if torch.cuda.is_available(): # 随机数种子seed确定时,模型的训练结果将始终保持一致 torch.cuda.manual_seed(123) else: torch.manual_seed(123) if os.path.isdir(opt.log_path): shutil.rmtree(opt.log_path) os.makedirs(opt.log_path) writer = SummaryWriter(opt.log_path) env = Tetris(width=opt.width, height=opt.height, block_size=opt.block_size) model = DeepQNetwork() optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr) criterion = nn.MSELoss() state = env.reset() if torch.cuda.is_available(): model.cuda() state = state.cuda() replay_memory = deque(maxlen=opt.replay_memory_size) epoch = 0 while epoch < opt.num_epochs: # 得到所有可能的下落方块 next_steps = env.get_next_states() # Exploration or exploitation epsilon = opt.final_epsilon + ( max(opt.num_decay_epochs - epoch, 0) * (opt.initial_epsilon - opt.final_epsilon) / opt.num_decay_epochs) u = random() random_action = u <= epsilon # 下一步落下的横向坐标以及旋转,以及得到下方方块的board状态 next_actions, next_states = zip(*next_steps.items()) next_states = torch.stack(next_states) if torch.cuda.is_available(): next_states = next_states.cuda() model.eval() with torch.no_grad(): predictions = model(next_states)[:, 0] model.train() # 采取的动作 if random_action: index = randint(0, len(next_steps) - 1) else: index = torch.argmax(predictions).item() next_state = next_states[index, :] action = next_actions[index] reward, done = env.step(action, render=False) if torch.cuda.is_available(): next_state = next_state.cuda() replay_memory.append([state, reward, next_state, done]) if done: final_score = env.score final_tetrominoes = env.tetrominoes final_cleared_lines = env.cleared_lines state = env.reset() if torch.cuda.is_available(): state = state.cuda() else: state = next_state continue if len(replay_memory) < opt.replay_memory_size / 10: continue epoch += 1 batch = sample(replay_memory, min(len(replay_memory), opt.batch_size)) ''' a = [2, 3, 4], b = [5, 6, 7], c = [a, b] e, f, g = zip(*c) e = (2, 5), f = (3, 6), g = (4, 7) 类型为tuple ''' state_batch, reward_batch, next_state_batch, done_batch = zip(*batch) state_batch = torch.stack(tuple(state for state in state_batch)) reward_batch = torch.from_numpy( np.array(reward_batch, dtype=np.float32)[:, None]) next_state_batch = torch.stack( tuple(state for state in next_state_batch)) if torch.cuda.is_available(): state_batch = state_batch.cuda() reward_batch = reward_batch.cuda() next_state_batch = next_state_batch.cuda() q_values = model(state_batch) model.eval() # Q_target with torch.no_grad(): next_prediction_batch = model(next_state_batch) model.train() y_batch = torch.cat( tuple(reward if done else reward + opt.gamma * prediction for reward, done, prediction in zip( reward_batch, done_batch, next_prediction_batch)))[:, None] optimizer.zero_grad() loss = criterion(q_values, y_batch) loss.backward() optimizer.step() print( "Epoch: {}/{}, Action: {}, Score: {}, Tetrominoes {}, Cleared lines: {}" .format(epoch, opt.num_epochs, action, final_score, final_tetrominoes, final_cleared_lines)) writer.add_scalar('Train/Score', final_score, epoch - 1) writer.add_scalar('Train/Tetrominoes', final_tetrominoes, epoch - 1) writer.add_scalar('Train/Cleared lines', final_cleared_lines, epoch - 1) if epoch > 0 and epoch % opt.save_interval == 0: torch.save(model, "{}/tetris_{}".format(opt.saved_path, epoch)) torch.save(model, "{}/tetris".format(opt.saved_path))
def train(opt): if torch.cuda.is_available(): torch.cuda.manual_seed(123) else: torch.manual_seed(123) model = DeepQNetwork() model_target = DeepQNetwork() if os.path.isdir(opt.log_path): shutil.rmtree(opt.log_path) os.makedirs(opt.log_path) writer = SummaryWriter(opt.log_path) optimizer = torch.optim.Adam(model.parameters(), lr=1e-6) criterion = nn.MSELoss() game_state = FlappyBird() image, reward, terminal, score = game_state.next_frame(0) image = pre_processing( image[:game_state.screen_width, :int(game_state.base_y)], opt.image_size, opt.image_size) image = torch.from_numpy(image) if torch.cuda.is_available(): model.cuda() model_target.cuda() image = image.cuda() state = torch.cat(tuple(image for _ in range(4)))[None, :, :, :] model_target.eval() replay_memory = [] iter = 0 while iter < opt.num_iters: prediction = model(state)[0] # Exploration or exploitation epsilon = opt.final_epsilon + ( (opt.num_iters - iter) * (opt.initial_epsilon - opt.final_epsilon) / opt.num_iters) u = random() random_action = u <= epsilon if random_action: #print("Perform a random action") action = randint(0, 1) else: action = torch.argmax(prediction).item() next_image, reward, terminal, score = game_state.next_frame(action) next_image = pre_processing( next_image[:game_state.screen_width, :int(game_state.base_y)], opt.image_size, opt.image_size) next_image = torch.from_numpy(next_image) if torch.cuda.is_available(): next_image = next_image.cuda() next_state = torch.cat((state[0, 1:, :, :], next_image))[None, :, :, :] replay_memory.append([state, action, reward, next_state, terminal]) if len(replay_memory) > opt.replay_memory_size: del replay_memory[0] batch = sample(replay_memory, min(len(replay_memory), opt.batch_size)) state_batch, action_batch, reward_batch, next_state_batch, terminal_batch = zip( *batch) state_batch = torch.cat(tuple(state for state in state_batch)) action_batch = torch.from_numpy( np.array([[1, 0] if action == 0 else [0, 1] for action in action_batch], dtype=np.float32)) reward_batch = torch.from_numpy( np.array(reward_batch, dtype=np.float32)[:, None]) next_state_batch = torch.cat(tuple(state for state in next_state_batch)) if torch.cuda.is_available(): state_batch = state_batch.cuda() action_batch = action_batch.cuda() reward_batch = reward_batch.cuda() next_state_batch = next_state_batch.cuda() current_prediction_batch = model(state_batch) next_prediction_batch = model_target(next_state_batch) y_batch = torch.cat( tuple(reward if terminal else reward + opt.gamma * prediction[max_action] for reward, terminal, prediction, max_action in zip( reward_batch, terminal_batch, next_prediction_batch, torch.argmax(model(next_state_batch), axis=1)))) q_value = torch.sum(current_prediction_batch * action_batch, dim=1) optimizer.zero_grad() # y_batch = y_batch.detach() loss = criterion(q_value, y_batch) loss.backward() optimizer.step() state = next_state if iter % opt.target_update_freq == 0: model_target.load_state_dict(model.state_dict()) iter += 1 if iter % 100 == 0: print( "Test::Double Q: Iteration: {}/{}, Action: {}, Loss: {}, Epsilon {}, Reward: {}, Q-value: {}" .format(iter + 1, opt.num_iters, action, loss, epsilon, reward, torch.max(prediction))) writer.add_scalar('Train/Loss', loss, iter) writer.add_scalar('Train/Epsilon', epsilon, iter) writer.add_scalar('Train/Reward', reward, iter) writer.add_scalar('Train/Q-value', torch.max(prediction), iter) writer.add_scalar('Train/score', score, iter) if (iter + 1) % 1000000 == 0: torch.save(model, "{}/flappy_bird_{}".format(opt.saved_path, iter + 1)) torch.save(model, "{}/flappy_bird".format(opt.saved_path))
def train(opt): if torch.cuda.is_available(): torch.cuda.manual_seed(123) else: torch.manual_seed(123) # TensorBoard if os.path.isdir(opt.log_path): shutil.rmtree(opt.log_path) os.makedirs(opt.log_path) writer = SummaryWriter(opt.log_path) # Modelo CHECKPOINT_FILE = opt.saved_path + "/" + opt.checkpoint_name if opt.load: if os.path.isfile(CHECKPOINT_FILE): print("--> Carregando Checkpoint '{}'.".format(CHECKPOINT_FILE)) if torch.cuda.is_available(): model = torch.load(CHECKPOINT_FILE) else: model = torch.load(CHECKPOINT_FILE, map_location=lambda storage, loc: storage) print("--> Checkpoint Carregado '{}'.".format(CHECKPOINT_FILE)) else: print("--> Checkpoint '{}' não encontrado.".format(CHECKPOINT_FILE)) model = DeepQNetwork() else: model = DeepQNetwork() optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr) criterion = nn.MSELoss() # Environment env = Tetris(width=opt.width, height=opt.height) state = env.reset() if torch.cuda.is_available(): model.cuda() state = state.cuda() replay_memory = deque(maxlen=opt.replay_memory_size) epoch = 0 prev_loss = 0 # Épocas do Checkpoint if opt.load and "_" in opt.checkpoint_name: start_epoch = opt.checkpoint_name.split("_")[-1] epoch = int(start_epoch) print("Checkpoint com {} épocas.".format(epoch)) # Loop de Treino while epoch < opt.num_epochs: next_steps = env.get_next_states() # Exploração ou Explotação epsilon = opt.final_epsilon + (max(opt.num_decay_epochs - epoch, 0) * ( opt.initial_epsilon - opt.final_epsilon) / opt.num_decay_epochs) u = random() random_action = u <= epsilon next_actions, next_states = zip(*next_steps.items()) next_states = torch.stack(next_states) if torch.cuda.is_available(): next_states = next_states.cuda() model.eval() with torch.no_grad(): predictions = model(next_states)[:, 0] model.train() if random_action: index = randint(0, len(next_steps) - 1) else: index = torch.argmax(predictions).item() next_state = next_states[index, :] action = next_actions[index] reward, done = env.step(action, render=True) if torch.cuda.is_available(): next_state = next_state.cuda() replay_memory.append([state, reward, next_state, done]) if done: final_score = env.score final_tetrominoes = env.tetrominoes final_cleared_lines = env.cleared_lines state = env.reset() if torch.cuda.is_available(): state = state.cuda() else: state = next_state continue # Replay Buffer if len(replay_memory) < opt.replay_memory_size / 10: print("replay_memory ", len(replay_memory)) continue epoch += 1 batch = sample(replay_memory, min(len(replay_memory), opt.batch_size)) state_batch, reward_batch, next_state_batch, done_batch = zip(*batch) state_batch = torch.stack(tuple(state for state in state_batch)) reward_batch = torch.from_numpy(np.array(reward_batch, dtype=np.float32)[:, None]) next_state_batch = torch.stack(tuple(state for state in next_state_batch)) # Aprendizado if torch.cuda.is_available(): state_batch = state_batch.cuda() reward_batch = reward_batch.cuda() next_state_batch = next_state_batch.cuda() q_values = model(state_batch) model.eval() with torch.no_grad(): next_prediction_batch = model(next_state_batch) model.train() y_batch = torch.cat( tuple(reward if done else reward + opt.gamma * prediction for reward, done, prediction in zip(reward_batch, done_batch, next_prediction_batch)))[:, None] optimizer.zero_grad() loss = criterion(q_values, y_batch) loss.backward() optimizer.step() prev_loss = loss.item() print("Epoch: {}/{}, Action: {}, Score: {}, Tetrominoes {}, Cleared lines: {}".format( epoch, opt.num_epochs, action, final_score, final_tetrominoes, final_cleared_lines)) writer.add_scalar('Train/Score', final_score, epoch - 1) writer.add_scalar('Train/Tetrominoes', final_tetrominoes, epoch - 1) writer.add_scalar('Train/Cleared lines', final_cleared_lines, epoch - 1) if epoch > 0 and epoch % opt.save_interval == 0: torch.save(model, "{}/{}_{}".format(opt.saved_path, opt.saved_name, epoch)) torch.save(model, "{}/{}".format(opt.saved_path, opt.saved_name))
def test(opt, conv1, conv2, conv3): if torch.cuda.is_available(): torch.cuda.manual_seed(123) else: torch.manual_seed(123) # if torch.cuda.is_available(): # model = torch.load("{}/tetris".format(opt.saved_path)) # else: # model = torch.load("{}/tetris".format(opt.saved_path), map_location=lambda storage, loc: storage) model = DeepQNetwork() model.eval() if False: # save weights ii = 1 for layer in model.modules(): if isinstance(layer, nn.Linear): if ii == 1: weights1 = layer.weight.cpu() weights1 = weights1.detach().numpy() pd.DataFrame(weights1).to_csv( 'trained_models/conv{}.csv'.format(ii)) if ii == 2: weights2 = layer.weight.cpu() weights2 = weights2.detach().numpy() pd.DataFrame(weights2).to_csv( 'trained_models/conv{}.csv'.format(ii)) if ii == 3: weights3 = layer.weight.cpu() weights3 = weights3.detach().numpy() pd.DataFrame(weights3).to_csv( 'trained_models/conv{}.csv'.format(ii)) ii += 1 if False: # load csv weights ii = 1 for layer in model.modules(): if isinstance(layer, nn.Linear): with torch.no_grad(): if ii == 1: layer.weight.data = torch.Tensor(conv1).cuda() if ii == 2: layer.weight.data = torch.Tensor(conv2).cuda() if ii == 3: layer.weight.data = torch.Tensor(conv1).cuda() ii += 1 env = Tetris(width=opt.width, height=opt.height, block_size=opt.block_size) env.reset() if torch.cuda.is_available(): model.cuda() out = cv2.VideoWriter( opt.output, cv2.VideoWriter_fourcc(*"MJPG"), opt.fps, (int(1.5 * opt.width * opt.block_size), opt.height * opt.block_size)) while True: next_steps = env.get_next_states() next_actions, next_states = zip(*next_steps.items()) next_states = torch.stack(next_states) if torch.cuda.is_available(): next_states = next_states.cuda() predictions = model(next_states)[:, 0] index = torch.argmax(predictions).item() action = next_actions[index] result, done = env.step(action, render=True, video=out) if done: out.release() return result
def train(opt): if torch.cuda.is_available(): torch.cuda.manual_seed(123) else: torch.manual_seed(123) if os.path.isdir(opt.log_path): shutil.rmtree(opt.log_path) os.makedirs(opt.log_path) writer = SummaryWriter(opt.log_path) env = Tetris(width=opt.width, height=opt.height, block_size=opt.block_size) model = DeepQNetwork() model_target = DeepQNetwork() optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr) criterion = nn.MSELoss() state = env.reset() if torch.cuda.is_available(): model.cuda() model_target.cuda() state = state.cuda() if opt.PER: replay_memory = Memory(capacity=opt.replay_memory_size) else: replay_memory = deque(maxlen=opt.replay_memory_size) epoch = 0 warmup_epoch = 0 while epoch < opt.num_epochs: next_steps = env.get_next_states() # Exploration or exploitation epsilon = opt.final_epsilon + ( max(opt.num_decay_epochs - epoch, 0) * (opt.initial_epsilon - opt.final_epsilon) / opt.num_decay_epochs) u = random() random_action = u <= epsilon next_actions, next_states = zip(*next_steps.items()) next_states = torch.stack(next_states) if torch.cuda.is_available(): next_states = next_states.cuda() model.eval() with torch.no_grad(): predictions = model(next_states)[:, 0] model.train() if random_action: index = randint(0, len(next_steps) - 1) else: index = torch.argmax(predictions).item() next_state = next_states[index, :] action = next_actions[index] reward, done = env.step(action, render=True) if torch.cuda.is_available(): next_state = next_state.cuda() if opt.PER: experience = state, action, reward, next_state, done replay_memory.store(experience) else: replay_memory.append([state, reward, next_state, done]) if done: final_score = env.score final_tetrominoes = env.tetrominoes final_cleared_lines = env.cleared_lines state = env.reset() if torch.cuda.is_available(): state = state.cuda() else: state = next_state continue warmup_epoch += 1 if warmup_epoch < opt.learning_starts: continue epoch += 1 if opt.PER: tree_idx, batch = replay_memory.sample(opt.batch_size) else: batch = sample(replay_memory, min(len(replay_memory), opt.batch_size)) state_batch, _, reward_batch, next_state_batch, done_batch = zip( *batch) state_batch = torch.stack(tuple(state for state in state_batch)) reward_batch = torch.from_numpy( np.array(reward_batch, dtype=np.float32)[:, None]) next_state_batch = torch.stack( tuple(state for state in next_state_batch)) if torch.cuda.is_available(): state_batch = state_batch.cuda() reward_batch = reward_batch.cuda() next_state_batch = next_state_batch.cuda() q_values = model(state_batch) model_target.eval() with torch.no_grad(): next_prediction_batch = model_target(next_state_batch) model_target.train() y_batch = torch.cat( tuple(reward if done else reward + opt.gamma * prediction for reward, done, prediction in zip( reward_batch, done_batch, next_prediction_batch)))[:, None] optimizer.zero_grad() loss = criterion(q_values, y_batch) loss.backward() optimizer.step() model.eval() model_target.eval() if opt.PER: with torch.no_grad(): if torch.cuda.is_available(): replay_memory.batch_update( tree_idx, np.abs(q_values.detach().cpu().numpy() - y_batch.cpu().numpy())) else: replay_memory.batch_update( tree_idx, np.abs(q_values.detach().numpy() - y_batch.numpy())) # Update target model <- model if epoch % opt.target_update_freq == 0: with torch.no_grad(): model_target.load_state_dict(model.state_dict()) model_target.train() model.eval() print( "Epoch: {}/{}, Action: {}, Score: {}, Tetrominoes {}, Cleared lines: {}" .format(epoch, opt.num_epochs, action, final_score, final_tetrominoes, final_cleared_lines)) writer.add_scalar('Train/Score', final_score, epoch - 1) writer.add_scalar('Train/Tetrominoes', final_tetrominoes, epoch - 1) writer.add_scalar('Train/Cleared lines', final_cleared_lines, epoch - 1) if (epoch > 0 and epoch % opt.save_interval) == 0 or final_score >= 10000.0: torch.save(model, "{}/tetris_{}".format(opt.saved_path, epoch)) torch.save(model, "{}/tetris".format(opt.saved_path))