if m.bias is not None: nn.init.constant_(m.bias, 0) if __name__ == '__main__': # seed = 1 model_fn = lambda: FastText(1024, 1024) model_name = 'fasttext_char' train_data = np.load('../../data/char_train_input.npy') train_label = np.load('../../data/label.npy') test_data = np.load('../../data/char_test_input.npy') # hold_out_test(model_fn, model_name, train_data, train_label, test_data, lr=1e-4) cross_validation_bagging(model_fn, model_name, train_data, train_label, test_data, lr=1e-4, patience=20, seed=2) # seed = 1 # model_fn = lambda: Fast_Attention_Text(1024, 1024) # model_name = 'fast_attention_text' # train_data = np.load('../../data/train_input.npy') # train_label = np.load('../../data/label.npy') # test_data = np.load('../../data/test_input.npy') # hold_out_test(model_fn, model_name, train_data, train_label, test_data) # cross_validation_bagging(model_fn, model_name, train_data, train_label, test_data, batch_size=32, lr=5e-4, # seed=seed)
elif isinstance(m, nn.Linear): nn.init.xavier_normal_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) if __name__ == '__main__': # seed = 1 # model_fn = lambda: FastText(1024, 1024) # model_name = 'new_fasttext' # train_data = np.load('../../data/train_input.npy') # train_label = np.load('../../data/label.npy') # test_data = np.load('../../data/test_input.npy') # cross_validation_bagging(model_fn, model_name, train_data, train_label, test_data, seed=seed) seed = 1 model_fn = lambda: Fast_Attention_Text(1024, 1024) model_name = 'fast_attention_text' train_data = np.load('../../data/train_input.npy') train_label = np.load('../../data/label.npy') test_data = np.load('../../data/test_input.npy') # hold_out_test(model_fn, model_name, train_data, train_label, test_data) cross_validation_bagging(model_fn, model_name, train_data, train_label, test_data, batch_size=32, lr=5e-4, seed=seed)
return out def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LSTM): for name, param in m.named_parameters(): if 'weight' in name: nn.init.orthogonal_(param) elif 'bias' in name: nn.init.constant_(param, 0.0) if __name__ == '__main__': model_fn = lambda: Pooled_BiLSTM(40, 128) model_name = 'pooled_bilstm' train_data = np.load('../../data/train_input.npy') train_label = np.load('../../data/label.npy') test_data = np.load('../../data/test_input.npy') cross_validation_bagging(model_fn, model_name, train_data, train_label, test_data)