def heft(wf_name, nodes): """ Heft algorithm :return: """ rm = ExperimentResourceManager(rg.r(nodes)) estimator = ModelTimeEstimator(bandwidth=10) _wf = wf(wf_name[0]) heft_schedule = run_heft(_wf, rm, estimator) actions = [(proc.start_time, int(proc.job.global_id), node.name_id) for node in heft_schedule.mapping for proc in heft_schedule.mapping[node]] actions = sorted(actions, key=lambda x: x[0]) actions = [(action[1], action[2]) for action in actions] test_wfs, test_times, test_scores, test_size = wf_setup(wf_name) ttree, tdata, trun_times = test_wfs[0] wfl = ctx.Context(len(_wf.get_all_unique_tasks()), nodes, trun_times, ttree, tdata) reward = 0 end_time = 0 for task, node in actions: task_id = wfl.candidates.tolist().index(task) reward, end_time = wfl.make_action(task_id, node) draw_heft_schedule(heft_schedule.mapping, wfl.worst_time, len(actions), 'h', '1') response = {'reward': reward, 'makespan': end_time} return reward, end_time
def run_dqts_episode(ei, logger, args): URL = f"http://{args.host}:{args.port}/" config = parameter_setup(args, DEFAULT_CONFIG) test_wfs, test_times, test_scores, test_size = wf_setup(config['wfs_name']) reward, sars_list = episode_dqts(ei, config, test_wfs, test_size, URL) remember(sars_list, URL) if logger is not None: logger.log_scalar('main/reward', reward, ei) return reward
def run_episode(ei, logger, args): URL = f"http://{args.host}:{args.port}/" config = parameter_setup(args, DEFAULT_CONFIG) print(config) test_wfs, test_times, test_scores, test_size = wf_setup(config['wfs_name']) reward, sars_list = episode(ei, config, test_wfs, test_size, URL) remember(sars_list, URL) if ei % 100 == 0: print("episode {} completed".format(ei)) if logger is not None: logger.log_scalar('main/reward', reward, ei) return reward
def interective_test(model, args): """ Interective Test :param model: :param args: :return: """ config = parameter_setup(args, DEFAULT_CONFIG) test_wfs, test_times, test_scores, test_size = wf_setup(config['wfs_name']) for i in range(test_size): ttree, tdata, trun_times = test_wfs[i] wfl = ctx.Context(config['agent_task'], config['nodes'], trun_times, ttree, tdata) sch = ScheduleInterectivePlotter(wfl.worst_time, wfl.m, wfl.n) wfl.name = config['wfs_name'][i] if config['actor_type'] == 'rnn': deq = RNNDeque(seq_size=config['seq_size'], size=config['state_size']) done = wfl.completed state = wfl.state for time in range(wfl.n): mask = wfl.get_mask() q = model.act_q(state.reshape(1, state.shape[0]), mask, False) q = np.squeeze(q, axis=0) if len(q.shape) > 1 else q action_idx = np.argmax(q) actions = [wfl.actions[action] for action in range(q.shape[-1])] best_t, best_n = actions[action_idx] copies_of_wfl = [deepcopy(wfl) for _ in range(len(actions))] reward, wf_time = wfl.make_action(best_t, best_n) next_state = wfl.state acts = [] for idx, action in enumerate(actions): wfl_copy = copies_of_wfl[idx] t, n = action if q[idx] != 0 or idx == action_idx: reward, wf_time, item = wfl_copy.make_action_item(t, n) acts.append((item, reward, n)) sch.draw_item(wfl.schedule, acts) if config['actor_type'] == 'rnn': deq.push(next_state) next_state = deq.show() done = wfl.completed state = next_state if done: test_scores[i].append(reward) test_times[i].append(wf_time) write_schedule(args.run_name, i, wfl)
def run_dqts_episode(model, ei, args, logger=None): """ Run episode of Learning, Remember and Replay :param model: :param ei: :param args: :return: """ config = parameter_setup(args, DEFAULT_CONFIG) test_wfs, test_times, test_scores, test_size = wf_setup(config['wfs_name']) reward, sars_list = episode_dqts(model, ei, config, test_wfs, test_size) remember(model, sars_list, args) replay(model, config['batch_size']) if logger is not None: logger.log_scalar('main/reward', reward, ei) return reward
def test(args, URL): """ Creates schedule using algorithm based on NN :param args: :param URL: :return: """ config = parameter_setup(args, DEFAULT_CONFIG) test_wfs, test_times, test_scores, test_size = wf_setup(config['wfs_name']) for i in range(test_size): tree, data, run_times = test_wfs[i] wfl = ctx.Context(config['agent_task'], config['nodes'], run_times, tree, data) wfl.name = config['wfs_name'][i] if config['actor_type'] == 'rnn': deq = RNNDeque(seq_size=config['seq_size'], size=config['state_size']) done = wfl.completed state = list(map(float, list(wfl.state))) if config['actor_type'] == 'rnn': deq.push(state) state = deq.show() for time in range(wfl.n): mask = list(map(int, list(wfl.get_mask()))) if config['actor_type'] == 'rnn': action = requests.post(f'{URL}test', json={'state': state.tolist(), 'mask': mask, 'sched': False}).json()[ 'action'] else: action = requests.post(f'{URL}test', json={'state': state, 'mask': mask, 'sched': False}).json()[ 'action'] act_t, act_n = wfl.actions[action] reward, wf_time = wfl.make_action(act_t, act_n) next_state = list(map(float, list(wfl.state))) if config['actor_type'] == 'rnn': deq.push(next_state) next_state = deq.show() done = wfl.completed state = next_state if done: test_scores[i].append(reward) test_times[i].append(wf_time) write_schedule(args.run_name, i, wfl)
def dqts_test(model, args): """ Create Schedule using current NN without learning parameters :param model: :param args: :return: """ config = parameter_setup(args, DEFAULT_CONFIG) test_wfs, test_times, test_scores, test_size = wf_setup(config['wfs_name']) for i in range(test_size): ttree, tdata, trun_times = test_wfs[i] wfl = dqts_ctx.Context(config['agent_task'], config['nodes'], trun_times, ttree, tdata) wfl.name = config['wfs_name'][i] if config['actor_type'] == 'rnn': deq = RNNDeque(seq_size=config['seq_size'], size=config['state_size']) done = wfl.completed state = wfl.state if config['actor_type'] == 'rnn': deq.push(state) state = deq.show() for time in range(wfl.n): mask = wfl.get_mask() action = model.act(state.reshape(1, state.shape[0]), mask, False) act_t, act_n = wfl.actions[action] reward, wf_time = wfl.make_action(act_t, act_n) next_state = wfl.state if config['actor_type'] == 'rnn': deq.push(next_state) next_state = deq.show() done = wfl.completed state = next_state if done: test_scores[i].append(reward) test_times[i].append(wf_time) write_schedule(args.run_name, i, wfl)