예제 #1
0
    def test_update(self):
        t = TTT(3)
        prev_state = [[1, 1, 0], [-1, -1, 0], [0, 0, 0]]
        next_state = [[1, 1, 1], [-1, -1, 0], [0, 0, 0]]
        prev_state = np.array(prev_state).reshape(-1)
        next_state = np.array(next_state).reshape(-1)
        result = t.get_result(next_state)
        self.assertEqual(result, {'terminated': True, 'score': 5})

        q = TabularQ(3)
        q.set_params(alpha=1, gamma=1)

        encoded_prev_state = t.get_encoded_state(prev_state)
        prev_state_index = q.get_index(encoded_prev_state)
        encoded_next_state = t.get_encoded_state(next_state)
        next_state_index = q.get_index(encoded_next_state)
        self.assertEqual(next_state_index, None)

        q.update(encoded_prev_state, 2, encoded_next_state, 5)
        updated_row = q._Q[prev_state_index, :]

        check_row = np.array_equal(updated_row, [0, 0, 5, 0, 0, 0, 0, 0, 0])
        self.assertTrue(check_row)

        # test correct inference :
        q._is_first_mover = True
        possible_moves = t.get_available_positions(prev_state)
        inferred = q.infer(encoded_prev_state, possible_moves, 1)
        self.assertEqual(inferred, 2)

        pass
예제 #2
0
    def run_game(self, agent1, agent2, size=3):

        t = TTT(size)
        for i in range(size * size):
            agent = agent1 if i % 2 == 0 else agent2
            inferred = agent(t.get_state())
            t.put(inferred)
            if t.is_terminated():
                break

        return t.get_result()
예제 #3
0
 def test_result1(self):
     t3 = TTT(3)
     s = [[1, -1, -1], [-1, 1, 1], [1, -1, 1]]
     s = np.array(s).reshape(-1)
     result = t3.get_result(s)
     to_equal = {
         'terminated': True,
         'score': 1,
         'winner': 1,
         'lines': [[0, 4, 8]]
     }
     self.assertDictEqual(result, to_equal)
예제 #4
0
    def test_game1(self):
        #  0 1 0
        # -1 1 0
        # -1 1 0
        t = TTT(3)
        result = t.get_result()
        self.assertDictEqual(result, {'terminated': False, 'score': 0})

        t.put(1)
        result = t.get_result()
        self.assertDictEqual(result, {'terminated': False, 'score': 0})

        t.put(3)
        result = t.get_result()
        self.assertDictEqual(result, {'terminated': False, 'score': 0})

        t.put(4)
        result = t.get_result()
        self.assertDictEqual(result, {'terminated': False, 'score': 0})

        t.put(6)
        result = t.get_result()
        self.assertDictEqual(result, {'terminated': False, 'score': 0})

        t.put(7)
        result = t.get_result()
        self.assertDictEqual(result, {'terminated': True, 'score': 5})

        return
예제 #5
0
    def _train_both(self,numOfGames):
        for _ in tqdm(range(numOfGames)):
            game = TTT(self._size)
            self._is_first_mover = True

            # one complete game :
            while True:
                encoded_prev_state = game.get_encoded_state()

                possible_moves = game.get_available_positions()
                selected_move = self._epsilon_greedy_train(encoded_prev_state,possible_moves)
                game.put(selected_move)

                encoded_next_state =  game.get_encoded_state()
                result = game.get_result()
                self.update(encoded_prev_state,selected_move,encoded_next_state,result['score'])
                if result['terminated']:
                    break
                pass

            pass
예제 #6
0
    def test_deterministic_vs_minimax(self):
        # gamma, alpha == 1 guarantees that for endstates s and optimal move a,
        # Q(s,a) = R(s,a) IF Q(s,a) IS NOT 0
        # Here, R(s,a) is the score of the terminated state
        parameters = {
            "ep_train": 0.5,
            "ep_infer": 0,
            "gamma": 1,
            "alpha": 1,
            "agent_for": 'both',
        }
        q = TabularQ(3)
        q.set_params(**parameters)
        q.train(numOfGames=500)

        s = Settings()
        minimax = minimax_load(s.path('minimax'))
        t = TTT(3)

        Q = q._Q
        to_check_state_indices = np.where(Q != [0, 0, 0, 0, 0, 0, 0, 0, 0])[0]
        to_check_state_indices = map(int, to_check_state_indices)

        for state_index in to_check_state_indices:

            self.assertFalse(
                np.array_equal(Q[state_index],
                               np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])))
            state = q.get_state(state_index)
            encoded_state = t.get_encoded_state(state)
            mover = t.get_mover(state=state)
            possible_moves = t.get_available_positions(state)

            if mover == 1:
                best_move_q = np.argmax(Q[state_index])
                if int(Q[state_index, best_move_q]) is not 0:
                    move_inferred = q.infer(encoded_state, possible_moves,
                                            mover)
                    q_value_1 = Q[state_index, best_move_q]
                    q_value_2 = Q[state_index, move_inferred]
                    self.assertEqual(q_value_1, q_value_2)
            elif mover == -1:
                best_move_q = np.argmin(Q[state_index])
                if int(Q[state_index, best_move_q]) is not 0:
                    move_inferred = q.infer(encoded_state, possible_moves,
                                            mover)
                    q_value_1 = Q[state_index, best_move_q]
                    q_value_2 = Q[state_index, move_inferred]
                    self.assertEqual(q_value_1, q_value_2)

            next_state = state.copy()
            next_state[best_move_q] = mover

            result = t.get_result(next_state)
            if result['terminated']:
                best_score, _ = minimax(state)
                q_value = Q[state_index, best_move_q]
                if best_score != q_value:
                    # not yet sampled (s,a)
                    # or withdraw case
                    self.assertEqual(q_value, 0)
                else:
                    # sampled (s,a)
                    self.assertEqual(best_score, q_value)
            pass
예제 #7
0
class GameWindow(tk.Toplevel):
    """Game UI"""
    def __init__(self, user_first: bool, size=3, *args, **kwargs):

        super().__init__(*args, **kwargs)

        # state variables
        self._user_first = user_first
        self._t = TTT(size)
        self._agent: Callable[[np.ndarray], int]
        self._num_of_moves = 0
        self._state_history = [self._t.get_state()]

        # UI accessors
        self._history_scale: tk.Scale
        self._player_labels: Dict[int, tk.Label]  # key : 1,2
        self._buttons = []

        # UI initialization
        self.title(f'TTT')
        self._make_top_frame()
        self._make_board(size)
        self._make_bottom_frame(size)
        return

    #region Public Methods
    def set_agent(self, agent: Callable[[np.ndarray], int], name: str) -> None:

        self._agent = agent
        return

    def get_result(self) -> dict:

        return self._t.get_result()

    #endregion

    #region Put UI Components
    def _make_top_frame(self):

        frame = tk.Frame(self)
        if self._user_first:
            text1 = 'O : User'
            text2 = 'X : AI'
        else:
            text1 = 'O : AI'
            text2 = 'X : User'
        label1 = tk.Label(frame, text=text1)
        label2 = tk.Label(frame, text=text2)
        label1.pack()
        label2.pack()
        frame.pack()
        return

    def _make_board(self, size):

        board = tk.Frame(self)
        buttons = self._buttons
        num_of_buttons = size * size
        for i in range(num_of_buttons):
            b = tk.Button(board,
                          width=3,
                          height=1,
                          font=('Helvetica', 30),
                          activebackground='white',
                          command=lambda num=i: self._on_click_board(num))
            buttons.append(b)
            b.grid(column=i % size, row=int(i / size))
            pass

        board.pack()
        return

    def _make_bottom_frame(self, size):

        frame = tk.Frame(self)

        history_scale = tk.Scale(frame,
                                 command=self._on_scale_move,
                                 orient='horizontal',
                                 from_=0,
                                 to=0)
        history_scale.grid(row=0, columnspan=2)
        self._history_scale = history_scale

        restart_button = tk.Button(frame,
                                   text="Restart",
                                   command=self._on_click_reset)
        exit_button = tk.Button(frame, text="Exit", command=self.destroy)
        restart_button.grid(row=1, column=0)
        exit_button.grid(row=1, column=1)

        frame.pack()

        return

    #endregion

    #region Event Handlers
    def _on_click_board(self, position: int):

        state_num = int(self._history_scale.get())
        is_rewinded = not (self._num_of_moves == state_num)
        if is_rewinded:
            # reset the game to the rewinded one :
            state_to_force = self._state_history[state_num]
            self._t.set_state(state_to_force)
            self._num_of_moves = self._t._num_moves
            self._state_history = self._state_history[0:(self._num_of_moves +
                                                         1)]
            pass

        self._t.put(position)
        current_state = self._t.get_state()
        self._state_history.append(current_state)
        self._num_of_moves += 1
        self._history_scale.configure(to=self._num_of_moves)
        self._history_scale.set(self._num_of_moves)
        """
        [issue] If this procedure is called by button.invoke()
        then it doesn't invoke the scale's command _on_scale_move.
        So call it manually (and hence, called twice in user's turn) :
        """
        self._on_scale_move(self._num_of_moves)

        return

    def _on_scale_move(self, state_num):

        state_num = int(state_num)
        first_mover_turn = True if state_num % 2 == 0 else False
        user_turn = first_mover_turn == self._user_first

        self._set_board(state_num, user_turn)

        if self.get_result()['terminated']:
            return

        if state_num == len(self._state_history) - 1:
            if user_turn:
                pass
            else:
                if hasattr(self, '_agent'):
                    self._on_agent_turn(state_num)
                pass
        else:
            # : agent's turn but it's a previous state
            pass

        return

    def _on_click_reset(self):

        self._num_of_moves = 0
        self._state_history = self._state_history[0:1]
        self._t.set_state(self._state_history[0])
        self._history_scale.configure(to=0)
        self._history_scale.set(0)
        self._set_board(0, self._user_first == True)

        return

    #endregion

    #region Private Methods
    def _on_agent_turn(self, state_num: int):

        # TODO : async progress bar
        state = self._state_history[state_num]
        move = self._agent(state)
        button = self._buttons[move]
        button.configure(state='normal')
        button.invoke()

        return

    def _set_board(self, state_num: int, user_turn: bool):
        """Modify board UI"""

        to_state = self._state_history[state_num]
        result = self._t.get_result(to_state)
        terminated = result['terminated']
        lines = result['lines']
        lines = sum(lines, [])  # flattening
        for p in range(len(to_state)):
            move = int(to_state[p])
            of_line = p in lines
            self._modify_button(p, move, user_turn, terminated, of_line)
        return

    def _modify_button(self,
                       button_position: int,
                       mover: int,
                       move_allowed: bool,
                       terminated=False,
                       of_line=False):

        button = self._buttons[button_position]

        args = {'disabledforeground': 'black', 'state': 'disabled'}
        if mover == 1:
            args['text'] = '○'
            args['state'] = 'disabled'
        elif mover == -1:
            args['text'] = '×'
            args['state'] = 'disabled'
        else:
            args['text'] = ' '
            if move_allowed:
                args['state'] = 'normal'
            elif not hasattr(self, '_agent'):
                args['state'] = 'normal'

        if terminated:
            args['state'] = 'disabled'
            if of_line:
                if mover == 1:
                    args['disabledforeground'] = 'steelblue'
                elif mover == -1:
                    args['disabledforeground'] = 'tomato'

        button.config(**args)

        return