예제 #1
0
    def run_skin_one_fold(self, number_of_training,
                          number_of_training_instances, fold, percent_of_train,
                          number_of_equal_disjoint_sets):

        # get skin data
        x_train, y_train, x_test, y_test, x, y = self.get_skin_data(
            percent_of_train)

        # get training weights
        weights_random = (
            regression.Regression().gradient_descent_random_general(
                x_train, y_train, number_of_training,
                number_of_training_instances))

        weights_all = (regression.Regression().gradient_descent_all(
            x_train, y_train))

        # how many "num_subset" equal
        # data_set, label = self.my_data.get_disjoint_subset_data(number_of_equal_disjoint_sets, x, y)
        data_set, label = Data().get_disjoint_subset_data(
            number_of_equal_disjoint_sets, x_train, y_train)

        weights_equal = (regression.Regression().gradient_descent_equal(
            data_set, label))

        # write trained weights to file
        Data().write_to_csv_file(
            "../resources/skin/result/weights/output_weights_random" +
            str(fold) + ".csv", weights_random)
        Data().write_to_csv_file(
            "../resources/skin/result/weights/output_weights_equal" +
            str(fold) + ".csv", weights_equal)
        Data().write_to_csv_file(
            "../resources/skin/result/weights/output_weights_all" + str(fold) +
            ".csv", weights_all)
        # get center point
        my_center_point = itertver.IteratedTverberg()
        center_point_random, average_point_random = my_center_point.get_center_and_average_point(
            weights_random)
        center_point_equal, average_point_equal = my_center_point.get_center_and_average_point(
            weights_equal)

        # testing phase
        test.Test().perform_test(
            x_test, y_test, weights_random, center_point_random,
            average_point_random, weights_all,
            "../resources/skin/result/errors/" + str(fold) +
            "error_random.txt")

        test.Test().perform_test(
            x_test, y_test, weights_equal, center_point_equal,
            average_point_equal, weights_all,
            "../resources/skin/result/errors/" + str(fold) + "error_equal.txt")
예제 #2
0
    def run_haber_man(self):
        my_sklearn = sklearnlib.Sklearnlib()
        weights, scores, mean_point = my_sklearn.train_and_test(3200, self.X, self.Y, 0.3)
        Data().write_to_csv_file("../resources/haberman/output_weights_haber_man", weights)
        Data().write_score_to_file("../resources/haberman/scores", scores)

        my_itertver = itertver.IteratedTverberg()
        center_point_with_proof = my_itertver.center_point(weights)

        my_plot = plot.Plot()
        my_plot.plot3dpoints(weights, center_point_with_proof[0][0], mean_point)
        print "Center Point with proof: ", center_point_with_proof[0]
        print "Center point: ", center_point_with_proof[0][0]
        print "Proof of center point: ", center_point_with_proof[0][1]
        print "Depth of center point: ", len(center_point_with_proof[0][1])
        return weights, center_point_with_proof[0][0], mean_point
예제 #3
0
    def post(self, type=None):
        self.set_header('Content-Type', 'application/json')
        jsonM = Data()

        getJson = self.request.body
        jsondata = json.loads(getJson)

        __is_base64 = False
        __image = None
        if 'url' in jsondata['query'].keys():
            __image = jsondata['query']['url']
        else:
            __image = jsondata['query']['base64']
            __is_base64 = True

        if __image is None:
            raise Exception('image data is empty!')

        __name = jsondata['query']['name']
        __id = jsondata['query']['id']
        __data = jsondata['query']['data']
        # 需要参与搜索的字段
        __search = jsondata['query']['search']

        __data['id'] = __id
        # 直接使用  application 的 redis 初始化
        Manage(self.application.r).index_image(__id, __search, __data, __image,
                                               __name, __is_base64)
        return self.write(
            jsonM.setStatus('status', 'OK').set('msg',
                                                str('index success!')).get())
예제 #4
0
 def __init__(self, Manage=None, result_size=10):
     """
     设置 管理器
     """
     self.manage = Manage
     self.feature = Feature()
     self.data = Data()
     self.result_size = result_size
예제 #5
0
 def get_skin_data(self, percent_of_train):
     """
     each run will get different subset from X, Y, as the matrix are shuffled before they are split
     """
     x, y = self.my_data.get_skin_data()
     x_train, y_train, x_test, y_test = Data().split_to_train_and_test(
         x, y, percent_of_train)
     return x_train, y_train, x_test, y_test, x, y
예제 #6
0
    def test_all_point(self, number_of_fold, percent_of_train, path):
        # get skin data
        x_train, y_train, x_test, y_test, x, y = self.get_skin_data(
            percent_of_train)
        weights_all = []
        sgd = linear_model.SGDClassifier()
        my_test = test.Test()
        for i in range(1, 11):
            x_train_, y_train_, x_test_, y_test_ = Data(
            ).split_to_train_and_test(x_train, y_train, i)
            sgd.fit(x_train_, y_train_)
            weights_all.append(sgd.coef_)
            i = float(i - 0.5)
            x_train_, y_train_, x_test_, y_test_ = Data(
            ).split_to_train_and_test(x_train, y_train, i)
            sgd.fit(x_train_, y_train_)
            weights_all.append(sgd.coef_)

        my_test.perform_test_for_all_point(x_test, y_test, weights_all, path)
예제 #7
0
    def index_image(self,
                    id=0,
                    search=[],
                    data=[],
                    image='',
                    name='',
                    is_base64=False):
        # TOOD 需要一个算法 , 将每次 的 search 字段数据 转化为相同的,数据
        # 根据 client 的条件字段创建 的 key
        source_data = {}
        for index_name in search:
            source_data[index_name] = data[index_name]

        # 每个对象必须要有一个名字
        data['name'] = name

        key_name = self.__generate_key(search, source_data)

        # 在尾部加上id
        key_name += '#' + str(id)
        # 0 -> data
        # 1 -> image - binary
        if image:
            if is_base64:
                # 对于 base64 的处理办法
                if 'base64,' in image:
                    image = image.split(',')[1]
                image_str = cStringIO.StringIO(base64.b64decode(image))
                im_instance = im.open(image_str).resize(self.image_size)
            else:
                # 对于 url 文件的处理办法
                res = urllib2.urlopen(image)
                if res.code == 200:
                    # save data into Bytes
                    imimage = io.BytesIO(res.read())
                    # 压缩图片以及,格式化为 JPEG
                    im_instance = im.open(imimage).resize(self.image_size)

            # 不管使用哪种参数方法 最终的结果都是保存 redis
            output = StringIO.StringIO()
            im_instance \
                .convert('RGB') \
                .save(output, 'JPEG')

            string = Data(data).to_string()

            value = string + \
                    self.divided + \
                    output.getvalue()

            self.r.set(key_name, value)
            return True
        return False
예제 #8
0
 def delete(self, type=None):
     try:
         # os.remove(os.environ[config.STORAGE_INDEX_DB])
         Manage(self.application.r).clear_db()
     except:
         pass
     self.set_header('Content-Type', 'application/json')
     jsonM = Data()
     self.write(
         jsonM.setStatus('status',
                         'OK').set('msg',
                                   str('delete index Success!')).get())
예제 #9
0
 def gradient_descent_random_general(self, data_set, label_set,
                                     number_of_training,
                                     number_of_training_instances):
     weights_random = []
     my_data = Data()
     for i in range(0, number_of_training):
         print i, "th training."
         reg_opt = optimization.Optimization()
         weights_random.append(
             reg_opt.gradient_descent_random(
                 data_set, label_set,
                 my_data.get_random_index_list(number_of_training_instances,
                                               data_set)))
     return weights_random
예제 #10
0
    def run_protein_one_fold(self, number_of_training,
                             number_of_training_instances,
                             number_of_equal_disjoint_sets, fold,
                             percent_of_training):
        x_, y_ = self.my_protein_data.get_protein_data()
        x_train, x_test, y_train, y_test = sklearnlib.Sklearnlib(
        ).split_train_and_test(x_, y_, percent_of_training)

        # get training weights
        weights_random = (
            regression.Regression().gradient_descent_random_general(
                x_train, y_train, number_of_training,
                number_of_training_instances))

        weights_all = (regression.Regression().gradient_descent_all(
            x_train, y_train))

        # how many "num_subset" equal
        # data_set, label = self.my_data.get_disjoint_subset_data(number_of_equal_disjoint_sets, x, y)
        data_set, label = Data().get_disjoint_subset_data(
            number_of_equal_disjoint_sets, x_train, y_train)

        weights_equal = (regression.Regression().gradient_descent_equal(
            data_set, label))

        # get center point
        my_center_point = itertver.IteratedTverberg()
        center_point_random, average_point_random = my_center_point.get_center_and_average_point(
            weights_random)
        center_point_equal, average_point_equal = my_center_point.get_center_and_average_point(
            weights_equal)

        # testing phase
        test.Test().perform_test(
            x_test, y_test, weights_random, center_point_random,
            average_point_random, weights_all,
            "../resources/protein/result_01/errors/" + str(fold) +
            "error_random.txt")

        test.Test().perform_test(
            x_test, y_test, weights_equal, center_point_equal,
            average_point_equal, weights_all,
            "../resources/protein/result_01/errors/" + str(fold) +
            "error_equal.txt")
예제 #11
0
def process_match(origin_io=None, lists=None):
    '''
    : match image by different process
    '''
    feature = Feature()
    data = Data()

    # print lists
    results = []

    # 直接返回 redis row data
    for container in lists:
        # 找到比对数据
        feature.set_byte_base_image(origin_io)

        # 风格数据
        data, image_str = container.split(Manage.divided)

        byte = io.BytesIO(image_str)
        feature.set_byte_storage_image(byte)

        bean = json.loads(data)
        result = {}
        # 使用算法到的
        # 大色块比对方案
        result = feature.process(None)

        # merge calculate score
        score = mix_hash(result)
        # 准备返回数据
        processed = {}

        for i in bean:
            processed[i] = bean[i]
        processed['score'] = score

        results.append(processed)
    return results