# coding: utf-8 # In[1]: import sys import os sys.path.append(os.path.abspath(os.path.join(os.path.abspath('.'), '../../'))) from keras.models import load_model from src.limit import limitUsage limitUsage("3") # In[2]: import pandas as pd import random import numpy as np import cv2 import os from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor import threading import shutil def get_train_data(train_file): ## 20% for testing df = pd.read_csv(train_file) n = int(df.shape[0] * .8) label_train = df.iloc[:n, -1] df_train = df.iloc[:n, :] df_test = df.iloc[n:, :] label_test = df.iloc[n:, -1]
## clean the test and train file import csv from src.config.staticConfig import StaticConfig from src.data.dataRep import Image import os from src.limit import limitUsage ## to avoid accidental gpu usage limitUsage("5,6") def is_valid(urls, is_train): for url in urls: if not os.path.exists(StaticConfig.getImagePath(url, is_train)): return False return True all_valid_entries = {} def get_key(is_train, row, index): return '_'.join(row[index:index + 5]) + '_' + str(is_train) def get_processed_file_name(is_train, row, index): key = get_key(is_train, row, index) if (key in all_valid_entries): return all_valid_entries[key] start_index = index * 5 img = Image(row[start_index], row[start_index + 1], row[start_index + 2], row[start_index + 3], row[start_index + 4], False)
import sys sys.path.append('..') from data.dataRep import FCEXPDataSet from config.staticConfig import StaticConfig from src.limit import limitUsage ### Command line options should be added in future limitUsage("7") ## download images from the url trainEntries = FCEXPDataSet(StaticConfig.getTrainCSVPath()) #trainEntries.downloadImages() trainEntries.cutImages() del trainEntries testEntries = FCEXPDataSet(StaticConfig.getTestCSVPath(), "test") testEntries.cutImages() #testEntries.downloadImages() del testEntries
# coding: utf-8 # In[16]: import sys import os sys.path.append(os.path.abspath(os.path.join(os.path.abspath('.'), '../../'))) from keras.models import load_model from src.limit import limitUsage limitUsage("2") # In[17]: modelFile = '../model/keras/model/facenet_keras.h5' # faceNetModel = load_model(modelFile) # In[18]: #faceNetModel.summary() # In[19]: facenet_model = load_model(modelFile) # In[20]: #!pip install git+https://www.github.com/keras-team/keras-contrib.git #!pwd
# coding: utf-8 # In[16]: import sys import os sys.path.append(os.path.abspath(os.path.join(os.path.abspath('.'), '../../'))) from keras.models import load_model from src.limit import limitUsage limitUsage("5") # In[17]: modelFile = '../model/keras/model/facenet_keras.h5' # faceNetModel = load_model(modelFile) # In[18]: #faceNetModel.summary() # In[19]: facenet_model = load_model(modelFile) # In[20]: #!pip install git+https://www.github.com/keras-team/keras-contrib.git #!pwd # In[42]: