args.preprocess_path, args.glove_path) embedding_table = np.loadtxt( os.path.join(args.preprocess_path, "weight.txt")).astype(np.float32) # DynamicRNN in this network on Ascend platform only support the condition that the shape of input_size # and hiddle_size is multiples of 16, this problem will be solved later. if args.device_target == 'Ascend': pad_num = int(np.ceil(cfg.embed_size / 16) * 16 - cfg.embed_size) if pad_num > 0: embedding_table = np.pad(embedding_table, [(0, 0), (0, pad_num)], 'constant') cfg.embed_size = int(np.ceil(cfg.embed_size / 16) * 16) network = SentimentNet(vocab_size=embedding_table.shape[0], embed_size=cfg.embed_size, num_hiddens=cfg.num_hiddens, num_layers=cfg.num_layers, bidirectional=cfg.bidirectional, num_classes=cfg.num_classes, weight=Tensor(embedding_table), batch_size=cfg.batch_size) # pre_trained if args.pre_trained: load_param_into_net(network, load_checkpoint(args.pre_trained)) ds_train = lstm_create_dataset(args.preprocess_path, cfg.batch_size, 1) loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') if cfg.dynamic_lr: lr = Tensor( get_lr(global_step=cfg.global_step, lr_init=cfg.lr_init, lr_end=cfg.lr_end,
if __name__ == '__main__': parser = argparse.ArgumentParser(description='MindSpore LSTM Exporter') parser.add_argument('--preprocess_path', type=str, default='./preprocess', help='path where the pre-process data is stored.') parser.add_argument('--ckpt_file', type=str, required=True, help='lstm ckpt file.') args = parser.parse_args() embedding_table = np.loadtxt( os.path.join(args.preprocess_path, "weight.txt")).astype(np.float32) network = SentimentNet(vocab_size=embedding_table.shape[0], embed_size=cfg.embed_size, num_hiddens=cfg.num_hiddens, num_layers=cfg.num_layers, bidirectional=cfg.bidirectional, num_classes=cfg.num_classes, weight=Tensor(embedding_table), batch_size=cfg.batch_size) param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(network, param_dict) input_arr = Tensor( np.random.uniform(0.0, 1e5, size=[64, 500]).astype(np.int32)) export(network, input_arr, file_name="lstm", file_format="MINDIR")