epochs = mc_epochs, validation_data = valid_gen, steps_per_epoch = tsteps, validation_steps = vsteps, callbacks = [check_point, early_stop, csv_logger, lr_schedule.lr_scheduler()]) train_end_time = time.time() m.sec_to_time_elapsed(train_end_time, train_start_time) ### Model Evaluation ############################################################################### # Training Progress m.plot_training_progress(csv_file_path = mc_csv_log_save_name, train_metric = 'loss', validation_metric = 'val_loss') # Predict with Model on Test Set saved_model = keras.models.load_model(mc_model_save_name) pred_values = model.predict(test_x) plot_i = 150 imm.plot_image_bounding_box(img_arr = test_x[plot_i], xmin = [pred_values[plot_i][0]], xmax = [pred_values[plot_i][1]],
steps_per_epoch=tsteps, validation_steps=vsteps, callbacks=[ check_point, early_stop, csv_logger, lr_schedule.lr_scheduler() ], class_weight=class_weight_dict) train_end_time = time.time() m.sec_to_time_elapsed(train_end_time, train_start_time) ### Plot Model Progress ############################################################################### # Accuracy m.plot_training_progress(csv_file_path=m.config_csv_save_name, train_metric='categorical_accuracy', validation_metric='val_categorical_accuracy') # Entropy (Loss) m.plot_training_progress(csv_file_path=m.config_csv_save_name, train_metric='loss', validation_metric='val_loss') ### Model Test Set Prediction ############################################################################### # Predict with Model on Test Set saved_model = keras.models.load_model(m.config_model_save_name) pred_values = model.predict(test_x) # Accuracy on Test Set true_pos = [