def predict_uncased_sadness(dropout=0.2): train_df, dev_df, test_df = get_data('sadness') bert_tokenizer_uncased = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) model = BertForUncasedClassification(dropout) model.load_state_dict(torch.load('./data/models/uncased-bert/models/sadness', map_location='cpu')) predicted_train_df = predict(train_df, model, bert_tokenizer_uncased, 'Clean_Tweet') predicted_dev_df = predict(dev_df, model, bert_tokenizer_uncased, 'Clean_Tweet') predicted_test_df = predict(test_df, model, bert_tokenizer_uncased, 'Clean_Tweet') predicted_train_df.to_csv('./data/models/uncased-bert/output/sadness_train_out.csv') predicted_dev_df.to_csv('./data/models/uncased-bert/output/sadness_dev_out.csv') predicted_test_df.to_csv('./data/models/uncased-bert/output/sadness_test_out.csv')
def train_individual_uncased_joy(): train, dev, _ = get_bert_data_loader('joy') final_training_stats = [] for d in [0.1, 0.2, 0.3]: for w in [0.8, 0.85, 0.9, 0.95]: for e in [1e-06, 1e-07, 1e-08]: for lr in [2e-5, 3e-5, 5e-5]: uncased_model = BertForUncasedClassification(dropout=d) uncased_trained, _, _, _ = train_model( uncased_model, 'joy_uncased', train, dev, filepath='./models/joy_uncased/', lr=lr, eps=e, weight_decay=w) final_training_stats.extend(uncased_trained) pd.DataFrame(final_training_stats).to_csv( './data/models/uncased-bert/results/joy/results.csv')