def main(): DEBUG = 1 renderOn = 1 if DEBUG: parametersForTrajectoryPath = {} startSampleIndex = 1 endSampleIndex = 2 parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) iterationIndex = 2 numTrainStepEachIteration = 1 numTrajectoriesPerIteration = 1 else: parametersForTrajectoryPath = json.loads(sys.argv[1]) startSampleIndex = int(sys.argv[2]) endSampleIndex = int(sys.argv[3]) parametersForTrajectoryPath['sampleIndex'] = (startSampleIndex, endSampleIndex) iterationIndex = int(parametersForTrajectoryPath['iterationIndex']) numTrainStepEachIteration = int(parametersForTrajectoryPath['numTrainStepEachIteration']) numTrajectoriesPerIteration = int(parametersForTrajectoryPath['numTrajectoriesPerIteration']) # check file exists or not dirName = os.path.dirname(__file__) trajectoriesSaveDirectory = os.path.join(dirName, '..', '..', 'data', 'iterTrain2wolves1sheepMADDPGEnv', 'trajectories') if not os.path.exists(trajectoriesSaveDirectory): os.makedirs(trajectoriesSaveDirectory) trajectorySaveExtension = '.pickle' maxRunningSteps = 50 numSimulations = 250 killzoneRadius = 50 numTree = 2 fixedParameters = {'maxRunningSteps': maxRunningSteps, 'numSimulations': numSimulations, 'killzoneRadius': killzoneRadius} generateTrajectorySavePath = GetSavePath(trajectoriesSaveDirectory, trajectorySaveExtension, fixedParameters) trajectorySavePath = generateTrajectorySavePath(parametersForTrajectoryPath) if not os.path.isfile(trajectorySavePath): # env MDP sheepsID = [0] wolvesID = [1, 2] blocksID = [] numSheeps = len(sheepsID) numWolves = len(wolvesID) numBlocks = len(blocksID) numAgents = numWolves + numSheeps numEntities = numAgents + numBlocks sheepSize = 0.05 wolfSize = 0.075 blockSize = 0.2 sheepMaxSpeed = 1.3 * 1 wolfMaxSpeed = 1.0 * 1 blockMaxSpeed = None entitiesSizeList = [sheepSize] * numSheeps + [wolfSize] * numWolves + [blockSize] * numBlocks entityMaxSpeedList = [sheepMaxSpeed] * numSheeps + [wolfMaxSpeed] * numWolves + [blockMaxSpeed] * numBlocks entitiesMovableList = [True] * numAgents + [False] * numBlocks massList = [1.0] * numEntities centralControlId = 1 centerControlIndexList = [centralControlId] reshapeAction = UnpackCenterControlAction(centerControlIndexList) getCollisionForce = GetCollisionForce() applyActionForce = ApplyActionForce(wolvesID, sheepsID, entitiesMovableList) applyEnvironForce = ApplyEnvironForce(numEntities, entitiesMovableList, entitiesSizeList, getCollisionForce, getPosFromAgentState) integrateState = IntegrateState(numEntities, entitiesMovableList, massList, entityMaxSpeedList, getVelFromAgentState, getPosFromAgentState) interpolateState = TransitMultiAgentChasing(numEntities, reshapeAction, applyActionForce, applyEnvironForce, integrateState) numFramesToInterpolate = 1 def transit(state, action): for frameIndex in range(numFramesToInterpolate): nextState = interpolateState(state, action) action = np.array([(0, 0)] * numAgents) state = nextState return nextState isTerminal = lambda state: False isCollision = IsCollision(getPosFromAgentState) collisonRewardWolf = 1 punishForOutOfBound = PunishForOutOfBound() rewardWolf = RewardCentralControlPunishBond(wolvesID, sheepsID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound, collisonRewardWolf) collisonRewardSheep = -1 rewardSheep = RewardCentralControlPunishBond(sheepsID, wolvesID, entitiesSizeList, getPosFromAgentState, isCollision, punishForOutOfBound, collisonRewardSheep) terminalRewardList = [collisonRewardSheep,collisonRewardWolf] rewardMultiAgents = [rewardSheep, rewardWolf] resetState = ResetMultiAgentChasing(numAgents, numBlocks) observeOneAgent = lambda agentID: Observe(agentID, wolvesID, sheepsID, blocksID, getPosFromAgentState, getVelFromAgentState) observe = lambda state: [observeOneAgent(agentID)(state) for agentID in range(numAgents)] # policy actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] wolfActionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] preyPowerRatio = 0.5 sheepActionSpace = list(map(tuple, np.array(actionSpace) * preyPowerRatio)) predatorPowerRatio = 0.5 wolfActionOneSpace = list(map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolfActionTwoSpace = list(map(tuple, np.array(wolfActionSpace) * predatorPowerRatio)) wolvesActionSpace = list(product(wolfActionOneSpace, wolfActionTwoSpace)) actionSpaceList = [sheepActionSpace, wolvesActionSpace] # neural network init numStateSpace = 4 * numEntities numSheepActionSpace = len(sheepActionSpace) numWolvesActionSpace = len(wolvesActionSpace) regularizationFactor = 1e-4 sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] generateSheepModel = GenerateModel(numStateSpace, numSheepActionSpace, regularizationFactor) generateWolvesModel = GenerateModel(numStateSpace, numWolvesActionSpace, regularizationFactor) generateModelList = [generateSheepModel, generateWolvesModel] sheepDepth = 9 wolfDepth = 9 depthList = [sheepDepth, wolfDepth] resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' sheepId,wolvesId = [0,1] trainableAgentIds = [sheepId, wolvesId] multiAgentNNmodel = [generateModel(sharedWidths * depth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) for depth, generateModel in zip(depthList, generateModelList)] otherAgentApproximatePolicy = [lambda NNmodel, : ApproximatePolicy(NNmodel, sheepActionSpace), lambda NNmodel, : ApproximatePolicy(NNmodel, wolvesActionSpace)] # NNGuidedMCTS init cInit = 1 cBase = 100 calculateScore = ScoreChild(cInit, cBase) selectChild = SelectChild(calculateScore) getApproximatePolicy = [lambda NNmodel, : ApproximatePolicy(NNmodel, sheepActionSpace), lambda NNmodel, : ApproximatePolicy(NNmodel, wolvesActionSpace)] getApproximateValue = [lambda NNmodel: ApproximateValue(NNmodel), lambda NNmodel: ApproximateValue(NNmodel)] def getStateFromNode(node): return list(node.id.values())[0] chooseActionInMCTS = sampleFromDistribution composeMultiAgentTransitInSingleAgentMCTS = ComposeMultiAgentTransitInSingleAgentMCTS(chooseActionInMCTS) composeSingleAgentGuidedMCTS = ComposeSingleAgentGuidedMCTS(numTree, numSimulations, actionSpaceList, terminalRewardList, selectChild, isTerminal, transit, getStateFromNode, getApproximatePolicy, getApproximateValue, composeMultiAgentTransitInSingleAgentMCTS) prepareMultiAgentPolicy = PrepareMultiAgentPolicy(composeSingleAgentGuidedMCTS, otherAgentApproximatePolicy, trainableAgentIds) # load model NNModelSaveExtension = '' NNModelSaveDirectory = os.path.join(dirName, '..', '..', 'data', 'iterTrain2wolves1sheepMADDPGEnv', 'NNModelRes') if not os.path.exists(NNModelSaveDirectory): os.makedirs(NNModelSaveDirectory) generateNNModelSavePath = GetSavePath(NNModelSaveDirectory, NNModelSaveExtension, fixedParameters) for agentId in trainableAgentIds: modelPath = generateNNModelSavePath({'iterationIndex': iterationIndex - 1, 'agentId': agentId, 'numTrajectoriesPerIteration': numTrajectoriesPerIteration, 'numTrainStepEachIteration': numTrainStepEachIteration}) restoredNNModel = restoreVariables(multiAgentNNmodel[agentId], modelPath) multiAgentNNmodel[agentId] = restoredNNModel multiAgentPolicy = prepareMultiAgentPolicy(multiAgentNNmodel) chooseActionList = [maxFromDistribution, maxFromDistribution] def sampleAction(state): actionDists = multiAgentPolicy(state) action = [chooseAction(actionDist) for actionDist, chooseAction in zip(actionDists, chooseActionList)] return action render = lambda state: None forwardOneStep = ForwardMultiAgentsOneStep(transit, rewardMultiAgents) sampleTrajectory = SampleTrajectoryWithRender(maxRunningSteps, isTerminal, resetState, forwardOneStep, render, renderOn) trajectories = [sampleTrajectory(sampleAction) for sampleIndex in range(startSampleIndex, endSampleIndex)] print([len(traj) for traj in trajectories]) saveToPickle(trajectories, trajectorySavePath)
def __call__(self, parameters): print(parameters) numWolves = parameters['numWolves'] numSheep = parameters['numSheep'] softParameterInInference = parameters['inferenceSoft'] softParameterInPlanning = parameters['wolfPolicySoft'] otherCompeteRate = parameters['otherCompeteRate'] competeDetectionRate = parameters['competeDetectionRate'] ## MDP Env # state is all multi agent state # action is all multi agent action xBoundary = [0, 600] yBoundary = [0, 600] numOfAgent = numWolves + numSheep reset = Reset(xBoundary, yBoundary, numOfAgent) possibleSheepIds = list(range(numSheep)) possibleWolvesIds = list(range(numSheep, numSheep + numWolves)) getSheepStatesFromAll = lambda state: np.array(state)[possibleSheepIds] getWolvesStatesFromAll = lambda state: np.array(state)[ possibleWolvesIds] killzoneRadius = 50 isTerminal = IsTerminal(killzoneRadius, getSheepStatesFromAll, getWolvesStatesFromAll) stayInBoundaryByReflectVelocity = StayInBoundaryByReflectVelocity( xBoundary, yBoundary) interpolateOneFrame = InterpolateOneFrame( stayInBoundaryByReflectVelocity) numFramesToInterpolate = 3 transit = TransitWithTerminalCheckOfInterpolation( numFramesToInterpolate, interpolateOneFrame, isTerminal) maxRunningSteps = 61 timeCost = 1 / maxRunningSteps terminalBonus = 1 rewardFunction = RewardFunctionByTerminal(timeCost, terminalBonus, isTerminal) forwardOneStep = ForwardOneStep(transit, rewardFunction) sampleTrajectory = SampleTrajectory(maxRunningSteps, isTerminal, reset, forwardOneStep) ## MDP Policy # Sheep Part # Sheep Policy Function numSheepPolicyStateSpace = 2 * (numWolves + 1) sheepActionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] preyPowerRatio = 12 sheepIndividualActionSpace = list( map(tuple, np.array(sheepActionSpace) * preyPowerRatio)) numSheepActionSpace = len(sheepIndividualActionSpace) regularizationFactor = 1e-4 generateSheepModel = GenerateModel(numSheepPolicyStateSpace, numSheepActionSpace, regularizationFactor) sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] sheepNNDepth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initSheepModel = generateSheepModel(sharedWidths * sheepNNDepth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) sheepModelPath = os.path.join( '..', '..', 'data', 'preTrainModel', 'agentId=0.' + str(numWolves) + '_depth=9_learningRate=0.0001_maxRunningSteps=50_miniBatchSize=256_numSimulations=110_trainSteps=50000' ) sheepNNModel = restoreVariables(initSheepModel, sheepModelPath) sheepPolicy = ApproximatePolicy(sheepNNModel, sheepIndividualActionSpace) # Sheep Generate Action softParameterInPlanningForSheep = 2.0 softPolicyInPlanningForSheep = SoftDistribution( softParameterInPlanningForSheep) softenSheepPolicy = lambda relativeAgentsStatesForSheepPolicy: softPolicyInPlanningForSheep( sheepPolicy(relativeAgentsStatesForSheepPolicy)) sheepChooseActionMethod = sampleFromDistribution sheepSampleActions = [ SampleActionOnFixedIntention(selfId, possibleWolvesIds, softenSheepPolicy, sheepChooseActionMethod) for selfId in possibleSheepIds ] # Wolves Part # Percept Action For Inference perceptAction = lambda action: action # Policy Likelihood function: Wolf Centrol Control NN Policy Given Intention numWolvesStateSpaces = [ 2 * (numInWe + 1) for numInWe in range(2, numWolves + 1) ] actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7)] predatorPowerRatio = 8 wolfIndividualActionSpace = list( map(tuple, np.array(actionSpace) * predatorPowerRatio)) wolvesCentralControlActionSpaces = [ list(it.product(wolfIndividualActionSpace, repeat=numInWe)) for numInWe in range(2, numWolves + 1) ] numWolvesCentralControlActionSpaces = [ len(wolvesCentralControlActionSpace) for wolvesCentralControlActionSpace in wolvesCentralControlActionSpaces ] regularizationFactor = 1e-4 generateWolvesCentralControlModels = [ GenerateModel(numStateSpace, numActionSpace, regularizationFactor) for numStateSpace, numActionSpace in zip( numWolvesStateSpaces, numWolvesCentralControlActionSpaces) ] sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] wolfNNDepth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initWolvesCentralControlModels = [ generateWolvesCentralControlModel(sharedWidths * wolfNNDepth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) for generateWolvesCentralControlModel in generateWolvesCentralControlModels ] NNNumSimulations = 250 wolvesModelPaths = [ os.path.join( '..', '..', 'data', 'preTrainModel', 'agentId=' + str(8 * np.sum([10**_ for _ in range(numInWe)])) + '_depth=9_learningRate=0.0001_maxRunningSteps=50_miniBatchSize=256_numSimulations=' + str(NNNumSimulations) + '_trainSteps=50000') for numInWe in range(2, numWolves + 1) ] print(wolvesModelPaths) wolvesCentralControlNNModels = [ restoreVariables(initWolvesCentralControlModel, wolvesModelPath) for initWolvesCentralControlModel, wolvesModelPath in zip( initWolvesCentralControlModels, wolvesModelPaths) ] wolvesCentralControlPolicies = [ ApproximatePolicy(NNModel, actionSpace) for NNModel, actionSpace in zip(wolvesCentralControlNNModels, wolvesCentralControlActionSpaces) ] centralControlPolicyListBasedOnNumAgentsInWe = wolvesCentralControlPolicies # 0 for two agents in We, 1 for three agents... softPolicyInInference = SoftDistribution(softParameterInInference) policyForCommittedAgentsInInference = PolicyForCommittedAgent( centralControlPolicyListBasedOnNumAgentsInWe, softPolicyInInference, getStateOrActionThirdPersonPerspective) concernedAgentsIds = [2] calCommittedAgentsPolicyLikelihood = CalCommittedAgentsPolicyLikelihood( concernedAgentsIds, policyForCommittedAgentsInInference) getGoalStateForIndividualHeatseeking = lambda statesRelative: np.array( statesRelative)[0] getSelfStateForIndividualHeatseeking = lambda statesRelative: np.array( statesRelative)[1] heatseekingPrecesion = 1.83 heatSeekingDiscreteStochasticPolicy = HeatSeekingDiscreteStochasticPolicy( heatseekingPrecesion, wolfIndividualActionSpace, getSelfStateForIndividualHeatseeking, getGoalStateForIndividualHeatseeking) policyForUncommittedAgentsInInference = PolicyForUncommittedAgent( possibleWolvesIds, heatSeekingDiscreteStochasticPolicy, softPolicyInInference, getStateOrActionFirstPersonPerspective) calUncommittedAgentsPolicyLikelihood = CalUncommittedAgentsPolicyLikelihood( possibleWolvesIds, concernedAgentsIds, policyForUncommittedAgentsInInference) # Joint Likelihood calJointLikelihood = lambda intention, state, perceivedAction: calCommittedAgentsPolicyLikelihood(intention, state, perceivedAction) * \ calUncommittedAgentsPolicyLikelihood(intention, state, perceivedAction) wolvesValueListBasedOnNumAgentsInWe = [ ApproximateValue(NNModel) for NNModel in wolvesCentralControlNNModels ] calIntentionValueGivenState = CalIntentionValueGivenState( wolvesValueListBasedOnNumAgentsInWe) softParamterForValue = 0.01 softValueToBuildDistribution = SoftMax(softParamterForValue) adjustIntentionPriorGivenValueOfState = AdjustIntentionPriorGivenValueOfState( calIntentionValueGivenState, softValueToBuildDistribution) # Sample and Save Trajectory trajectoriesWithIntentionDists = [] for trajectoryId in range(self.numTrajectories): # Intention Prior For inference otherWolfPossibleIntentionSpaces = {0: [(0, (1, 2))], 1: [(0, ())]} otherIntentionType = np.random.choice( [1, 0], p=[otherCompeteRate, 1 - otherCompeteRate]) otherWolfIntentionSpace = otherWolfPossibleIntentionSpaces[ otherIntentionType] selfPossibleIntentionSpaces = { 0: [(0, (1, 2))], 0.5: [(0, (1, 2)), (0, ())], 1: [(0, ())] } selfWolfIntentionSpace = selfPossibleIntentionSpaces[ competeDetectionRate] intentionSpacesForAllWolves = [ selfWolfIntentionSpace, otherWolfIntentionSpace ] wolvesIntentionPriors = [{ tuple(intention): 1 / len(allPossibleIntentionsOneWolf) for intention in allPossibleIntentionsOneWolf } for allPossibleIntentionsOneWolf in intentionSpacesForAllWolves] # Infer and update Intention variablesForAllWolves = [[ intentionSpace ] for intentionSpace in intentionSpacesForAllWolves] jointHypothesisSpaces = [ pd.MultiIndex.from_product(variables, names=['intention']) for variables in variablesForAllWolves ] concernedHypothesisVariable = ['intention'] priorDecayRate = 1 softPrior = SoftDistribution(priorDecayRate) inferIntentionOneStepList = [ InferOneStep(jointHypothesisSpace, concernedHypothesisVariable, calJointLikelihood, softPrior) for jointHypothesisSpace in jointHypothesisSpaces ] chooseIntention = sampleFromDistribution valuePriorEndTime = -100 updateIntentions = [ UpdateIntention(intentionPrior, valuePriorEndTime, adjustIntentionPriorGivenValueOfState, perceptAction, inferIntentionOneStep, chooseIntention) for intentionPrior, inferIntentionOneStep in zip( wolvesIntentionPriors, inferIntentionOneStepList) ] # reset intention and adjuste intention prior attributes tools for multiple trajectory intentionResetAttributes = [ 'timeStep', 'lastState', 'lastAction', 'intentionPrior', 'formerIntentionPriors' ] intentionResetAttributeValues = [ dict( zip(intentionResetAttributes, [0, None, None, intentionPrior, [intentionPrior]])) for intentionPrior in wolvesIntentionPriors ] resetIntentions = ResetObjects(intentionResetAttributeValues, updateIntentions) returnAttributes = ['formerIntentionPriors'] getIntentionDistributions = GetObjectsValuesOfAttributes( returnAttributes, updateIntentions) attributesToRecord = ['lastAction'] recordActionForUpdateIntention = RecordValuesForObjects( attributesToRecord, updateIntentions) # Wovels Generate Action softPolicyInPlanning = SoftDistribution(softParameterInPlanning) policyForCommittedAgentInPlanning = PolicyForCommittedAgent( centralControlPolicyListBasedOnNumAgentsInWe, softPolicyInPlanning, getStateOrActionThirdPersonPerspective) policyForUncommittedAgentInPlanning = PolicyForUncommittedAgent( possibleWolvesIds, heatSeekingDiscreteStochasticPolicy, softPolicyInPlanning, getStateOrActionFirstPersonPerspective) wolfChooseActionMethod = sampleFromDistribution getSelfActionThirdPersonPerspective = lambda weIds, selfId: list( weIds).index(selfId) chooseCommittedAction = GetActionFromJointActionDistribution( wolfChooseActionMethod, getSelfActionThirdPersonPerspective) chooseUncommittedAction = sampleFromDistribution wolvesSampleIndividualActionGivenIntentionList = [ SampleIndividualActionGivenIntention( selfId, policyForCommittedAgentInPlanning, policyForUncommittedAgentInPlanning, chooseCommittedAction, chooseUncommittedAction) for selfId in possibleWolvesIds ] wolvesSampleActions = [ SampleActionOnChangableIntention( updateIntention, wolvesSampleIndividualActionGivenIntention) for updateIntention, wolvesSampleIndividualActionGivenIntention in zip(updateIntentions, wolvesSampleIndividualActionGivenIntentionList) ] allIndividualSampleActions = sheepSampleActions + wolvesSampleActions sampleActionMultiAgent = SampleActionMultiagent( allIndividualSampleActions, recordActionForUpdateIntention) trajectory = sampleTrajectory(sampleActionMultiAgent) intentionDistributions = getIntentionDistributions() trajectoryWithIntentionDists = [ tuple(list(SASRPair) + list(intentionDist)) for SASRPair, intentionDist in zip(trajectory, intentionDistributions) ] trajectoriesWithIntentionDists.append( tuple(trajectoryWithIntentionDists)) resetIntentions() #print(intentionDistributions[-1], otherCompeteRate) trajectoryFixedParameters = { 'sheepPolicySoft': softParameterInPlanningForSheep, 'wolfPolicySoft': softParameterInPlanning, 'maxRunningSteps': maxRunningSteps, 'competePolicy': 'heatseeking', 'NNNumSimulations': NNNumSimulations, 'heatseekingPrecesion': heatseekingPrecesion } self.saveTrajectoryByParameters(trajectoriesWithIntentionDists, trajectoryFixedParameters, parameters) print(np.mean([len(tra) for tra in trajectoriesWithIntentionDists]))
def main(): numWolves = 2 numSheep = 1 numWolvesStateSpaces = [ 2 * (numInWe + 1) for numInWe in range(2, numWolves + 1) ] actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7)] #actionSpace = [(10, 0), (0, 10), (-10, 0), (0, -10)] predatorPowerRatio = 8 wolfIndividualActionSpace = list( map(tuple, np.array(actionSpace) * predatorPowerRatio)) wolvesCentralControlActionSpaces = [ list(it.product(wolfIndividualActionSpace, repeat=numInWe)) for numInWe in range(2, numWolves + 1) ] numWolvesCentralControlActionSpaces = [ len(wolvesCentralControlActionSpace) for wolvesCentralControlActionSpace in wolvesCentralControlActionSpaces ] regularizationFactor = 1e-4 generateWolvesCentralControlModels = [ GenerateModel(numStateSpace, numActionSpace, regularizationFactor) for numStateSpace, numActionSpace in zip( numWolvesStateSpaces, numWolvesCentralControlActionSpaces) ] sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] wolfNNDepth = 9 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initWolvesCentralControlModels = [ generateWolvesCentralControlModel(sharedWidths * wolfNNDepth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) for generateWolvesCentralControlModel in generateWolvesCentralControlModels ] NNNumSimulations = 250 wolvesModelPaths = [ os.path.join( '..', '..', 'data', 'preTrainModel', 'agentId=' + str(len(actionSpace) * np.sum([10**_ for _ in range(numInWe)])) + '_depth=9_learningRate=0.0001_maxRunningSteps=50_miniBatchSize=256_numSimulations=' + str(NNNumSimulations) + '_trainSteps=50000') for numInWe in range(2, numWolves + 1) ] print(wolvesModelPaths) wolvesCentralControlNNModels = [ restoreVariables(initWolvesCentralControlModel, wolvesModelPath) for initWolvesCentralControlModel, wolvesModelPath in zip( initWolvesCentralControlModels, wolvesModelPaths) ] wolvesValueFunctionListBasedOnNumAgentsInWe = [ ApproximateValue(NNModel) for NNModel in wolvesCentralControlNNModels ] valueFunction = wolvesValueFunctionListBasedOnNumAgentsInWe[numWolves - 2] xBoundary = [0, 600] yBoundary = [0, 600] reset = Reset(xBoundary, yBoundary, numWolves) numGridX = 120 numGridY = 120 xInterval = (xBoundary[1] - xBoundary[0]) / numGridX yInterval = (yBoundary[1] - yBoundary[0]) / numGridY sheepXPosition = [(gridIndex + 0.5) * xInterval for gridIndex in range(numGridX)] sheepYPosition = [(gridIndex + 0.5) * yInterval for gridIndex in range(numGridY)] wolvesState = reset() wolvesState = np.array([[300, 350], [550, 400]]) print(wolvesState) levelValues = [sheepXPosition, sheepYPosition] levelNames = ["sheepXPosition", "sheepYPosition"] modelIndex = pd.MultiIndex.from_product(levelValues, names=levelNames) toSplitFrame = pd.DataFrame(index=modelIndex) evaluate = lambda df: evaluateValue(df, valueFunction, wolvesState) valueResultDf = toSplitFrame.groupby(levelNames).apply(evaluate) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) drawHeatmapPlot(valueResultDf, ax) fig.savefig('valueMap2', dpi=300) plt.show()