# logFormatter = logging.Formatter("%(asctime)s [%(threadName)-12.12s]" # "[%(levelname)-5.5s] %(message)s") # rootLogger = logging.getLogger() # rootLogger.setLevel(logging.DEBUG) # # consoleHandler = logging.StreamHandler() # # consoleHandler.setFormatter(logFormatter) # # rootLogger.addHandler(consoleHandler) # fileHandler = logging.FileHandler(output_file_name[:-4] + '.log') # fileHandler.setFormatter(logFormatter) # fileHandler.setLevel(logging.DEBUG) # rootLogger.addHandler(fileHandler) logging.info('Output file name will be "{}"'.format(output_file_name)) # ------ start optimization results = optimization.find_best_protocol( problem_specification=dict(model=model, model_parameters=model_parameters, task='critical point'), optimization_specs=dict( protocol=protocol, protocol_options=dict(num_frequencies=num_frequencies), optimization_method=optimization_method, initial_parameters=initial_parameters, parameters_constraints=parameters_constraints, optimization_options=dict(xatol=1e-16, fatol=1e-16, disp=True)), other_options=dict(scan_times=np.linspace(2, 3.2, 500))) # ------ save results to file results.to_csv(output_file_name)
import numpy as np import pandas as pd import logging if '../../' not in sys.path: sys.path.append('../../') import src.optimization as optimization import src.protocol_ansatz as protocol_ansatz from src.utils import autonumber_filename, basic_logger_configuration output_file_name = os.path.basename(__file__)[7:-3] + '.csv' output_file_name = autonumber_filename(output_file_name) basic_logger_configuration(filename=output_file_name[:-3] + 'log') logging.info('Output file name will be "{}"'.format(output_file_name)) # ------ start optimization results = optimization.find_best_protocol( problem_specification=dict(model='rabi', model_parameters=dict(N=100, Omega=100, omega_0=1.), task=dict(initial_intensity=0, final_intensity=10)), optimization_specs=dict(protocol='crab', protocol_options=dict(num_frequencies=8), optimization_method='Nelder-Mead', parameters_constraints=[-20, 20]), other_options=dict(scan_times=np.linspace(4, 20, 400))) # ------ save results to file results.to_csv(output_file_name)
# rootLogger.addHandler(consoleHandler) fileHandler = logging.FileHandler(output_file_name[:-4] + '.log') fileHandler.setFormatter(logFormatter) fileHandler.setLevel(logging.DEBUG) rootLogger.addHandler(fileHandler) logging.info('Output file name will be "{}"'.format(output_file_name)) # ------ start optimization results = optimization.find_best_protocol( problem_specification=dict( model=model, model_parameters=model_parameters, task='critical point state generation' ), optimization_specs=dict( protocol=protocol, optimization_method=optimization_method, initial_parameters=initial_parameters, parameters_constraints=parameters_constraints ), other_options=dict( scan_times=np.linspace(0.1, 2, 100) ) ) # ------ save results to file results.to_csv(output_file_name)
import pandas as pd import logging if '../../' not in sys.path: sys.path.append('../../') import src.optimization as optimization import src.protocol_ansatz as protocol_ansatz from src.utils import autonumber_filename, basic_logger_configuration output_file_name = os.path.basename(__file__)[7:-3] + '.csv' output_file_name = autonumber_filename(output_file_name) basic_logger_configuration(filename=output_file_name[:-3] + 'log') logging.info('Output file name will be "{}"'.format(output_file_name)) # ------ start optimization num_frequencies = 8 results = optimization.find_best_protocol( problem_specification=dict(model='lz', model_parameters=dict(omega_0=1), task=dict(initial_intensity=-5, final_intensity=5)), optimization_specs=dict( protocol='crab', protocol_options=dict(num_frequencies=num_frequencies), optimization_method='Nelder-Mead', parameters_constraints=[-10, 10], initial_parameters=[[-1, 1]] * (2 * num_frequencies)), other_options=dict(scan_times=np.linspace(0.01, 10, 400))) # ------ save results to file results.to_csv(output_file_name)
# ------ start optimization num_frequencies = 8 protocol = protocol_ansatz.CRABProtocolAnsatz(num_frequencies=num_frequencies) protocol.generate_rnd_frequencies_each_tf = False for idx in range(num_frequencies): protocol.hyperpars['nuk' + str(idx + 1)] = 0 protocol.fill_hyperpar_value(y0=-5, y1=5) results = optimization.find_best_protocol( problem_specification=dict( model='lz', model_parameters=dict(omega_0=1), task=dict(initial_intensity=-5, final_intensity=5) ), optimization_specs=dict( protocol=protocol, protocol_options=dict(num_frequencies=num_frequencies), optimization_method='Nelder-Mead', parameters_constraints=[-10, 10], initial_parameters=[0] * (2 * num_frequencies), optimization_options=dict(maxiter=1e5, maxfev=1e5, xatol=1e-8, fatol=1e-8, adaptive=True) ), other_options=dict( scan_times=np.linspace(1, 2, 30) ) ) # ------ save results to file results.to_csv(output_file_name)
rootLogger.setLevel(logging.DEBUG) fileHandler = logging.FileHandler(output_file_name[:-4] + '.log') fileHandler.setFormatter(logFormatter) fileHandler.setLevel(logging.DEBUG) rootLogger.addHandler(fileHandler) logging.info('Output file name will be "{}"'.format(output_file_name)) # ------ start optimization results = optimization.find_best_protocol( problem_specification=dict( model=model, model_parameters=model_parameters, task=task ), optimization_specs=dict( protocol=protocol, optimization_method=optimization_method, parameters_constraints=parameters_constraints, initial_parameters=initial_parameters ), other_options=dict( scan_times=np.linspace(time_initial, time_final, time_subintervals) ) ) # ------ save results to file results.to_csv(output_file_name)
import logging if '../../' not in sys.path: sys.path.append('../../') import src.optimization as optimization import src.protocol_ansatz as protocol_ansatz from src.utils import autonumber_filename, basic_logger_configuration output_file_name = os.path.basename(__file__)[7:-3] + '.csv' output_file_name = autonumber_filename(output_file_name) basic_logger_configuration(filename=output_file_name[:-3] + 'log') logging.info('Output file name will be "{}"'.format(output_file_name)) third_time = lambda t: t / 3. twothirds_time = lambda t: 2 * t / 3. initial_parameters = [[-1, 1]] * 3 + [third_time, twothirds_time] # ------ start optimization results = optimization.find_best_protocol( problem_specification=dict(model='lmg', model_parameters=dict(num_spins=50), task=dict(initial_intensity=0, final_intensity=2)), optimization_specs=dict( protocol=protocol_ansatz.TripleBangProtocolAnsatz(), optimization_method='Nelder-Mead', parameters_constraints=[-10, 10], initial_parameters=initial_parameters), other_options=dict(scan_times=np.linspace(10, 20, 400))) # ------ save results to file results.to_csv(output_file_name)
sys.path.append('../../') import src.optimization as optimization import src.protocol_ansatz as protocol_ansatz from src.utils import autonumber_filename, basic_logger_configuration output_file_name = os.path.basename(__file__)[7:-3] + '.csv' output_file_name = autonumber_filename(output_file_name) basic_logger_configuration(filename=output_file_name[:-3] + 'log') logging.info('Output file name will be "{}"'.format(output_file_name)) third_time = lambda t: t / 3. twothirds_time = lambda t: 2 * t / 3. initial_parameters = [[-1, 1]] * 3 + [third_time, twothirds_time] # ------ start optimization results = optimization.find_best_protocol( problem_specification=dict(model='rabi', model_parameters=dict(N=100, Omega=100, omega_0=1.), task=dict(initial_intensity=0, final_intensity=10)), optimization_specs=dict( protocol=protocol_ansatz.TripleBangProtocolAnsatz(), optimization_method='powell', parameters_constraints=[-20, 20], initial_parameters=initial_parameters), other_options=dict(scan_times=np.linspace(4, 20, 400))) # ------ save results to file results.to_csv(output_file_name)
import os import sys import numpy as np import pandas as pd import logging if '../../' not in sys.path: sys.path.append('../../') import src.optimization as optimization import src.protocol_ansatz as protocol_ansatz from src.utils import autonumber_filename, basic_logger_configuration output_file_name = os.path.basename(__file__)[7:-3] + '.csv' output_file_name = autonumber_filename(output_file_name) basic_logger_configuration(filename=output_file_name[:-3] + 'log') logging.info('Output file name will be "{}"'.format(output_file_name)) # ------ start optimization results = optimization.find_best_protocol( problem_specification=dict(model='lmg', model_parameters=dict(num_spins=50), task=dict(initial_intensity=0, final_intensity=2)), optimization_specs=dict(protocol='crab', protocol_options=dict(num_frequencies=8), optimization_method='Nelder-Mead', parameters_constraints=[-10, 10]), other_options=dict(scan_times=np.linspace(10, 20, 400))) # ------ save results to file results.to_csv(output_file_name)
# consoleHandler = logging.StreamHandler() # consoleHandler.setFormatter(logFormatter) # rootLogger.addHandler(consoleHandler) fileHandler = logging.FileHandler(output_file_name[:-4] + '.log') fileHandler.setFormatter(logFormatter) fileHandler.setLevel(logging.DEBUG) rootLogger.addHandler(fileHandler) logging.info('Output file name will be "{}"'.format(output_file_name)) # ------ start optimization results = optimization.find_best_protocol( problem_specification=dict( model=model, model_parameters=model_parameters, task='critical point state generation' ), optimization_specs=dict( protocol=protocol, protocol_options=dict(num_frequencies=2), optimization_method=optimization_method ), other_options=dict( scan_times=np.linspace(0.1, 4, 100) ) ) # ------ save results to file results.to_csv(output_file_name)
# consoleHandler.setFormatter(logFormatter) # rootLogger.addHandler(consoleHandler) fileHandler = logging.FileHandler(output_file_name[:-4] + '.log') fileHandler.setFormatter(logFormatter) fileHandler.setLevel(logging.DEBUG) rootLogger.addHandler(fileHandler) logging.info('Output file name will be "{}"'.format(output_file_name)) # ------ start optimization results = optimization.find_best_protocol( problem_specification=dict( model=model, model_parameters=model_parameters, task=task ), optimization_specs=dict( protocol=protocol, optimization_method=optimization_method, parameters_constraints=parameters_constraints ), other_options=dict( scan_times=np.linspace(0.1, 4, 200) ) ) # ------ save results to file results.to_csv(output_file_name)
rootLogger.setLevel(logging.DEBUG) # consoleHandler = logging.StreamHandler() # consoleHandler.setFormatter(logFormatter) # rootLogger.addHandler(consoleHandler) fileHandler = logging.FileHandler(output_file_name[:-4] + '.log') fileHandler.setFormatter(logFormatter) fileHandler.setLevel(logging.DEBUG) rootLogger.addHandler(fileHandler) logging.info('Output file name will be "{}"'.format(output_file_name)) # ------ start optimization num_spins_list = np.arange(50, 210, 10) # [50, 60, ..., 140, 150] tf_results = np.zeros(shape=(len(num_spins_list), 2)) # will contain (num_spin, tf) for idx, num_spins in enumerate(num_spins_list): logging.info('Starting optimization with {} spins'.format(num_spins)) results = optimization.find_best_protocol( problem_specification=dict(model=model, model_parameters=dict(num_spins=num_spins), task='critical point state generation'), optimization_specs=dict(protocol=protocol, optimization_method=optimization_method), other_options=dict(scan_times=np.arange(1, 2, 0.01), stopping_condition=0.99)) tf_results[idx] = [num_spins, results.iloc[-1]['tf']] tf_results = pd.DataFrame(tf_results, columns=['num_spins', 'tf']) # ------ save results to file tf_results.to_csv(output_file_name)
import os import sys import numpy as np import pandas as pd import logging if '../../' not in sys.path: sys.path.append('../../') import src.optimization as optimization import src.protocol_ansatz as protocol_ansatz from src.utils import autonumber_filename, basic_logger_configuration output_file_name = os.path.basename(__file__)[7:-3] + '.csv' output_file_name = autonumber_filename(output_file_name) basic_logger_configuration(filename=output_file_name[:-3] + 'log') logging.info('Output file name will be "{}"'.format(output_file_name)) # ------ start optimization results = optimization.find_best_protocol( problem_specification=dict(model='lz', model_parameters=dict(omega_0=1), task=dict(initial_intensity=-5, final_intensity=5)), optimization_specs=dict(protocol='doublebang', optimization_method='Powell', parameters_constraints=[-30, 30], initial_parameters=[[-2, 2], 'halftime', [-2, 2]]), other_options=dict(scan_times=np.linspace(0.01, 10, 400))) # ------ save results to file results.to_csv(output_file_name)
logFormatter = logging.Formatter("%(asctime)s [%(threadName)-12.12s]" "[%(levelname)-5.5s] %(message)s") rootLogger = logging.getLogger() rootLogger.setLevel(logging.DEBUG) # consoleHandler = logging.StreamHandler() # consoleHandler.setFormatter(logFormatter) # rootLogger.addHandler(consoleHandler) fileHandler = logging.FileHandler(output_file_name[:-4] + '.log') fileHandler.setFormatter(logFormatter) fileHandler.setLevel(logging.DEBUG) rootLogger.addHandler(fileHandler) logging.info('Output file name will be "{}"'.format(output_file_name)) # ------ start optimization results = optimization.find_best_protocol( problem_specification=dict(model=model, model_parameters=model_parameters, task='critical point'), optimization_specs=dict(protocol=protocol, optimization_method=optimization_method, initial_parameters=initial_parameters, parameters_constraints=parameters_constraints, optimization_options=dict(xtol=1e-16, ftol=1e-16, disp=False)), other_options=dict(scan_times=np.linspace(0.1, 20, 1000))) # ------ save results to file results.to_csv(output_file_name)
import os import sys import numpy as np import pandas as pd import logging if '../../' not in sys.path: sys.path.append('../../') import src.optimization as optimization import src.protocol_ansatz as protocol_ansatz from src.utils import autonumber_filename, basic_logger_configuration output_file_name = os.path.basename(__file__)[7:-3] + '.csv' output_file_name = autonumber_filename(output_file_name) basic_logger_configuration(filename=output_file_name[:-3] + 'log') logging.info('Output file name will be "{}"'.format(output_file_name)) # ------ start optimization results = optimization.find_best_protocol( problem_specification=dict(model='lmg', model_parameters=dict(num_spins=20), task=dict(initial_intensity=0, final_intensity=2)), optimization_specs=dict(protocol='doublebang', optimization_method='Powell', parameters_constraints=[-10, 10]), other_options=dict(scan_times=np.linspace(0.1, 20, 400))) # ------ save results to file results.to_csv(output_file_name)
rootLogger.addHandler(fileHandler) logging.info('Output file name will be "{}"'.format(output_file_name)) # ------ start optimization Omegas_list = np.arange(20, 210, 10) tf_results = np.zeros(shape=(len(Omegas_list), 6)) # will contain (num_spin, tf) for idx, Omega in enumerate(Omegas_list): logging.info('Starting optimization with {} spins'.format(Omega)) results = optimization.find_best_protocol( problem_specification=dict(model=model, model_parameters=dict(N=Omega, Omega=Omega, omega_0=1.), task='critical point'), optimization_specs=dict(protocol=protocol, optimization_method=optimization_method, optimization_options=dict(xtol=1e-8, ftol=1e-8, disp=True)), other_options=dict(scan_times=np.arange(1, 3, 0.01), stopping_condition=0.999)) tf_results[idx][0] = Omega tf_results[idx][1:] = results.iloc[-1] tf_results = pd.DataFrame(tf_results, columns=['Omega', 'tf', 'fid', 'y0', 't1', 'y1']) # ------ save results to file tf_results.to_csv(output_file_name)