def test_chop_roi(self, tmp_path): size_original = (80, 80) original_ds, _, _ = _make_dataset(size_original) original_shape = original_ds.VHI.shape processor = BasePreProcessor(tmp_path) subset_str = 'east_africa' new_ds = processor.chop_roi(ds=original_ds, subset_str=subset_str) output_shape = new_ds.VHI.shape assert original_shape != output_shape, f"The chop_roi should lead to\ smaller datasets than the original. Expected output_shape: {output_shape}\ to be different from original_shape: {original_shape}" assert ((new_ds.lat.values.min() >= -11) & (new_ds.lat.values.max() <= 23) ), f"Expected latitude to be in the range -11 : 23. Currently:\ {new_ds.lat.values.min()} : {new_ds.lat.values.max()}" assert ( (new_ds.lon.values.min() >= 21) & (new_ds.lon.values.max() <= 51.8) ), f"Expected longitude to be in the range 21 : 51.8. Currently:\
# create forecast_horizon fh = pd.to_timedelta(ds_new.time.values - ds_new.initialisation_date.values) ds_new["time"] = fh ds_new = ds_new.rename({"time": "forecast_horizon"}) # create a new coord time = ds_new.initialisation_date + ds_new.forecast_horizon ds_new = ds_new.assign_coords(time=time) # ------------------------------------------------------------------------------ # Test PREPROCESSING # ------------------------------------------------------------------------------ from src.preprocess.base import BasePreProcessor b = BasePreProcessor() ds1_kenya = b.chop_roi(ds1, inverse_lat=True) ds2_kenya = b.chop_roi(ds2, inverse_lat=True) # concat across initialisation dates ds_kenya = xr.concat([ds1_kenya, ds2_kenya], dim="initialisation_date") stacked = ds_kenya.stack(time=("initialisation_date", "forecast_horizon")) # stack each individually k1 = ds1_kenya.stack(time=("initialisation_date", "forecast_horizon")) k2 = ds2_kenya.stack(time=("initialisation_date", "forecast_horizon")) # test selectors stacked.sel(forecast_horizon=np.timedelta64(28, "D")) stacked.sel(initialisation_date="1997-01-01") stacked.swap_dims({"time": "valid_time"}).sel(valid_time="1997-04")