def getInputImage(self, imagename): return util.loadImage(self.pathInput + imagename)
def getExpectedOutput(self, testname): self.testname = testname return util.loadImage(self.pathExpectOutput + self.testname + '.png')
# Use this file as you wish to generate the images needed to answer the report import src.project.Utilities as util import numpy as np import src.project.SelectiveImageAcquisition as sia image = util.loadImage('images/brain.png') rows, cols = image.shape print(image.shape) # code for cardiac cartesian # mask = sia.cartesianPattern((rows, cols), 0.7) mask = sia.circlePattern((rows, cols), 90) shift_fft = util.getDFT(image) filtered_image_fft = np.multiply(mask, shift_fft) filtered_image = util.post_process_images(util.getImage(filtered_image_fft)) util.displayImage(filtered_image)
# Use this file as you wish to generate the images needed to answer the report import src.project.Utilities as util import src.project.ImageSynthesisNoise as isn heart = "images/cardiac.jpg" brain = "images/brain.png" matrix = "images/noisyimage.npy" ############## Utilities ################### img = util.loadImage(heart) img2 = util.loadImage(brain) img3 = util.loadMatrix(matrix) # util.displayImage(img) # util.displayImage(img2) #util.displayImage(img) h = img.shape[0] w = img.shape[1] h1 = img2.shape[0] w1 = img2.shape[1] w2 = img3.shape[1] h2 = img3.shape[0] print(h2) print(w2) mask_size = (h, w) mask_size2 = (h1, w1) #img_copy = util.getDFT(img2)
def test_loadImage_jpg(self): expected = self.setup.getExpectedOutput(self._testMethodName) self.actual = util.loadImage("resources/inputs/test_loadImage.jpg") self.assertTrue(self.setup.imagesEqual(expected, self.actual))
import cv2 import numpy as np import src.project.SelectiveImageAcquisition as aqc import src.project.Utilities as util cardiac = util.loadImage("images/cardiac.jpg") normal_cardiac = util.normalizeImage(cardiac) dft_cardiac = util.getDFT(normal_cardiac) write_dft = util.writableDFT(dft_cardiac) util.saveMatrix("Cardiac_DFT.jpg", write_dft) height, width = cardiac.shape cardiac_size = np.array([height, width]) brain = util.loadImage("images/brain.png") normal_brain = util.normalizeImage(brain) dft_brain = util.getDFT(normal_brain) #util.saveMatrix("Brain_DFT.jpg", dft_brain) height, width = brain.shape brain_size = np.array([height, width]) p1mask = aqc.bandPattern(cardiac_size, 15, 128, 35) p1fmask = util.post_process_image(p1mask) util.saveImage("p1fmask.jpg", p1fmask) p1applied = util.applyMask(dft_cardiac, p1mask) p1image = util.getImage(p1applied) p1fimage = util.post_process_image(p1image) util.saveImage('p1_Masked_Image.jpg', p1fimage) p2mask1 = aqc.bandPattern(cardiac_size, 15, 128, 10) p2applied1 = util.applyMask(dft_cardiac, p2mask1)