예제 #1
0
def test_triplets_timing():
    tc = OrderedDict(
        [
            (43.0, 0.1353352832366127), (44.0, 0.24935220877729614), (45.0, 0.41111229050718745),
            (46.0, 0.6065306597126333), (47.0, 0.8007374029168081), (48.0, 0.9459594689067655), (49.0, 1.0),
            (50.0, 0.9459594689067655), (51.0, 0.8007374029168081), (52.0, 0.6065306597126333),
            (53.0, 0.41111229050718745),
            (54.0, 0.24935220877729614)
        ]
    )
    #df, iti, tone_length, dt = 4, .04, .033, .001
    #actual = aba_triplet(tc, df, iti=iti, tone_length=tone_length, dt=dt)
    stim = ABAStimulus()
    actual = stim.generate_triplet_tones()
    # we wanna check the tone length... of all 3...
    tone_time = int(stim.tone_length/stim.dt)
    iti_time = int(stim.iti/stim.dt)
    gap_time = iti_time - tone_time

    # for u_ind in xrange(actual.shape[0]):
    for t_ind in xrange(3):
        start_ind = iti_time * t_ind
        # check the tone length
        assert list(actual[start_ind:]).index(0) == tone_time
        # check the gap length
        if t_ind is not 2:
            assert list(actual[start_ind + tone_time:] > 0).index(True) == gap_time
    # check the period
    assert len(actual) == iti_time * 4
    assert not any([np.isnan(x) for x in actual])
예제 #2
0
def test_build_stimulus_currents():
    stim = ABAStimulus()

    # center, spread for each unit, starting at 440 Hz A and 3 semitones up from there
    s_units = [
        Selectivity(music.key_to_frequency(49), 1, 0.6),
        Selectivity(music.key_to_frequency(46), 1, 0.6)
    ]
    stim = ABAStimulus(a_semitone=49, df=3)
    network = SynapticNetwork(selectivities=s_units, stimulus=stim)
    out = network.build_stimulus_currents()
    assert out[0][0] > out[1][0]
    assert out[0][50] < out[1][50]
예제 #3
0
def test_tones_init():
    stim = ABAStimulus()
    # print(stim.__dict__)
    assert len(stim.tax) == len(stim.tones) == stim.ttot
    assert stim.tones[0] == 49
    assert stim.tax[-1] == stim.T # tax[0] is not 0...
    assert not any([np.isnan(x) for x in stim.tones])
예제 #4
0
def test_map_tones_to_cell():
    u1 = SensoryWCUnit()
    stimulus = ABAStimulus()
    u1.add_stim_current(stimulus, .5)
    # print(u1.currents)
    # assert False
    assert u1.stim[0] == 0
    u1.currents["stim"].update()
    assert u1.currents["stim"].value == 1
예제 #5
0
def test_selectivity():
    Selectivity = namedtuple("Selectivity",
                             ("best_frequency", "spread", "gain"))

    # center, spread for each unit, starting at 440 Hz A and 3 semitones up from there
    s_units = [
        Selectivity(music.key_to_frequency(49), 1, 0.8),
        Selectivity(music.key_to_frequency(52), 1, 0.8)
    ]
    stim = ABAStimulus()
    network = TonotopicNetwork(s_units, stim)
    network.update_all(10)
    assert network.units[0].r > network.units[1].r
예제 #6
0
def test_pars_list():
    Selectivity = namedtuple("Selectivity",
                             ("best_frequency", "spread", "gain"))
    pars_list = [{"tau": 100., "the": .4}, None]
    # center, spread for each unit, starting at 440 Hz A and 3 semitones up from there
    s_units = [
        Selectivity(music.key_to_frequency(49), 1.1, 0.8),
        Selectivity(music.key_to_frequency(49), 1, 0.8)
    ]
    stim = ABAStimulus()
    network = TonotopicNetwork(s_units, stim, pars_list=pars_list)
    network.update_all(10)
    # print(network.units[0].__dict__)
    # print(network.units[1].__dict__)
    assert network.units[0].r < network.units[1].r
예제 #7
0
            # update response
            self.unit.update()
            # update traces
            for trace in self.traces.values():
                trace.update_trace()
            self.t_i += 1

    @staticmethod
    def main():
        pass


if __name__ == '__main__':
    tic = datetime.datetime.now()
    u1 = SensoryWCUnit(name="u1", tauA=5000, gSFA=0.8)
    stim = ABAStimulus(a_semitone=44, df=9)
    u1.add_stim_current(stim, weight=0.5)
    sim = SensoryTripletsSimulation(sensory_unit=u1, T=5)

    sim.run()
    toc = datetime.datetime.now()
    # let's try it with seaborn and a dataframe
    trace_dict = {}
    trace_dict.update((k, v.trace) for k, v in sim.traces.items())
    trace_dict['tax'] = sim.tax
    data = pd.DataFrame(trace_dict, index=sim.tax) \
        [['tax', 'FR', 'SFA', 'stim']]

    plot_sensory_traces(data=data, unit=u1)

    # data1 = data.add(pd.Series(np.ones(len(sim.tax)), index=sim.tax))
예제 #8
0
        df["tax"] = sim.tax
        ulst = [df]
        for k, v in units.items()[1:]:
            ndf = pd.DataFrame(v)  # units.items()[0][1], index=sim.tax)
            ndf["unit"] = k  # units.items()[0][0]
            ndf["tax"] = sim.tax
            ulst.append(ndf)

        df_out = pd.concat(ulst)
        return df_out


if __name__ == '__main__':
    tic = datetime.datetime.now()

    stim = ABAStimulus()
    Selectivity = namedtuple("Selectivity", ("best_frequency", "spread", "gain"))

    # center, spread for each unit, starting at 440 Hz A and 3 semitones up from there
    s_units = [
        Selectivity(music.key_to_frequency(49), 1, 0.6),
        Selectivity(music.key_to_frequency(52), 1, 0.6)
    ]

    stim = ABAStimulus(a_semitone=49, df=3)
    network = TonotopicNetwork(s_units, stim)
    sim = TonotopicTripletsSimulation(network=network)
    sim.run()
    data = sim.traces_to_df()
    g = sns.FacetGrid(data, col='unit', col_wrap=1)
    g.map_dataframe(plot_generic_traces)
예제 #9
0
        """
        Add a unit to the network.
        Args:
            selectivity: tuple of (best_frequency, spread, gain)
                best_frequency (float): Hz, e. g., 440.0
                spread (float): by default, standard deviation of norm response curve in semitones away from BF
                gain (float): strength of the stimulus on the cell.
        """
        best_frequency, spread, gain = selectivity
        name = name = 's({st}:{sp}:{g})'.format(st=int(
            music.frequency_to_key(best_frequency)),
                                                sp=spread,
                                                g=gain)
        unit = SensoryWCUnit(best_frequency=best_frequency,
                             spread=spread,
                             name=name,
                             **kwargs)
        unit.add_stim_current(self.stimulus, weight=gain)
        self.units.append(unit)


if __name__ == "__main__":
    tic = time.time()
    stim = ABAStimulus()
    network = TonotopicNetwork(s_units, stim)
    network.update_all(10)
    toc = time.time()
    print(toc - tic)
    print(network.units[0].r, network.units[1].r)
    print(stim.value)
예제 #10
0
 def __init__(self, **kwargs):
     print("AB")
     ABAStimulus.__init__(self, **kwargs)
     self.tones = self.repeating_tones(self.generate_ab_interval())